Uddeholm Rigor[®]

© UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder.

SS-EN ISO 9001
SS-EN ISO 14001

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Uddeholm Rigor®

PROPERTIES PROFILE

Uddeholm Rigor is a universal medium alloyed cold work tool steel placed between 12 % Cr-steels and carbon tool steel like AISI O1. The steel has an excellent combination of wear and chipping resistance and a hardenability well suited for modern heat treatment processing. Uddeholm Rigor has also excellent machining and grinding properties.

APPLICATIONS

The property profile of Uddeholm Rigor combine to give a steel suitable for the manufacture of medium run tooling for applications where a combination of resistance to abrasive wear and chipping is needed. This makes Uddeholm Rigor a good general purpose cold work tool steel.

GENERAL

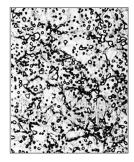
Uddeholm Rigor is an air- or oil hardening chromium-molybdenum-vanadium alloyed tool steel characterized by:

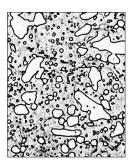
- Good machinability
- High stability after hardening
- High compressive strength
- Good hardenability
- Good wear resistance

Typical analysis %	C 1.0	Si 0.3	Mn 0.6	Cr 5.3	Mo 1.1	V 0.2
Standard specification	AISI A2. BA2. WNr. 1.2363. Euro X 100 CrMoV 5					
Delivery condition	Soft annealed to approx. 215 HB					
Colour code	Red/green					

APPLICATIONS

Uddeholm Rigor takes a place in the Uddeholm tool steel range between Uddeholm Arne and Uddeholm Sverker 21, offering an excellent combination of good wear resistance and toughness. It may be regarded, therefore, as a "universal" cold work steel.

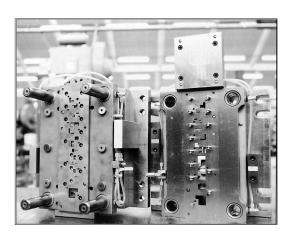

For cutting operations the good toughness of Uddeholm Rigor gives excellent resistance to chipping of the cutting edge. In many cases tools made from this steel have given better tooling economy than high-carbon, high-chromium steel of the BD3/W.-Nr. 2080 type. Uddeholm Rigor has much better machining and grinding properties.


FORMING

	Hardness HRC
Tools for: Bending, raising, deep-drawing,	
rim-rolling, spinning and flow-turning	56–62
Coining dies	56–60
Tube- and section forming rolls	58-62
Master hobs for cold hobbing	58–60
Swaging blocks	56–60
Gauges, measuring tools, guide rails bushes, sleeves	58–62
Dies and inserts for moulding tablets, abrasive plastics	58–62

AVAILABILITY

Uddeholm Rigor can be supplied in various finishes, including the hot-rolled, premachined and fine-machined condition. It is also available in the form of hollow bars and rings.



Comparison of fine-grained Uddeholm Rigor with high-carbon, high-chromium steel of the D3/W.-Nr. 2080 type.

CUTTING

	Material thickness mm	Hardness HRC
Tools for: Blanking, punching,	up to 3 mm (1/8")	60–62
piercing, cropping, shearing, trimming, clipping	3–6 mm (1/8–1/4")	56–60
unning, suppling	6–10 mm (1/4–13/32")	54–56
Short cold shears		
Rotary shear blades for plast	56–60	
Clipping, trimming tools for forgings	Hot Cold	58–60 56–58

PROPERTIES

PHYSICAL DATA

Hardened and tempered to 62 HRC. Data at room temperature and elevated temperatures.

Temperature	20°C (68°F)	200°C (375°F)	400°C (750°F)
Density kg/m³ lbs/in³	7 750 0.279	7 700 0.277	7 650 0.275
Modulus of elasticity N/mm² psi	190 000 27.5 x 10 ⁶	185 000 26.9 x 10 ⁶	170 000 24.6 x 10 ⁶
Coefficient of thermal expansion per °C from 20°C per °F from 68°F	- -	11.6 x 10 ⁻⁶ 6.5 x 10 ⁻⁶	11.3 x 10 ⁻⁶ 6.3 x 10 ⁻⁶
Thermal conductivity W/m °C Btu in/(ft²h°F)	26.0 181	27.0 188	28.5 199
Specific heat J/kg °C Btu/lb °F	460 0.11	-	-

COMPRESSIVE STRENGTH

Approximate values.

	Rc0,2		
Hardness	Nmm²	ksi	
62 HRC	2200	319	
60 HRC	2150	312	
55 HRC	1800	261	
50 HRC	1350	196	

HEAT TREATMENT

SOFT ANNEALING

Protect the steel and heat through to 850°C (1560°F). Then cool in the furnace at 10°C (20°F) per hour to 650°C (1200°F), then freely in air.

STRESS RELIEVING

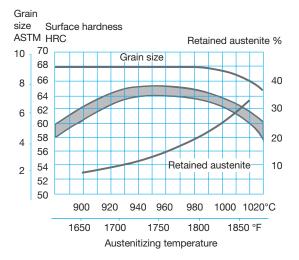
After rough machining the tool should be heated through to 650°C (1200°F), holding time 2 hours. Cool slowly to 500°C (930°F), then freely in air.

HARDENING

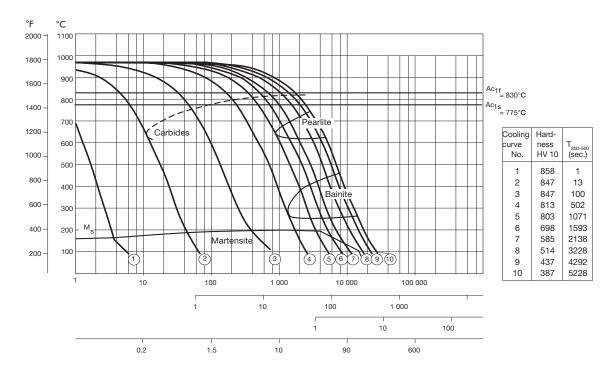
Preheating temperature: 650–750°C (1200–1300°F).

Austenitizing temperature: 925–970°C (1690–1780°F) but usually 940–960°C (1720–1760°F).

Temperature °C °F		Soaking* time min.	Hardness before tempering
925	1700	40	approx. 63 HRC
950	1740	30	approx. 64 HRC
970	1780	20	approx. 64 HRC

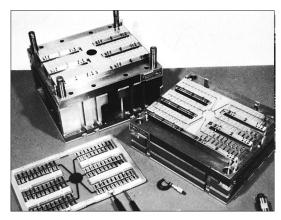

^{*} Soaking time = time at hardening temperature after the tool is fully heated through

Protect the part against decarburization and oxidation during hardening.


QUENCHING MEDIA

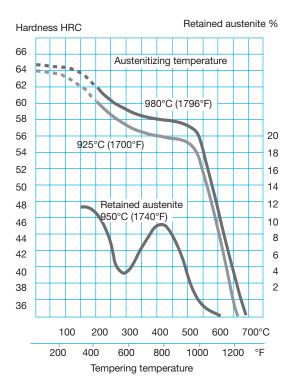
- Martempering bath or fluidized bed at 180- 220°C (360-430°F) or 450-550°C (840-1020°F) then cool in air
- · Circulating air or atmosphere
- Vacuum furnace with overpressure of gas at cooling
- Oil (only for small and uncomplicated tools)

HARDNESS AS A FUNCTION OF HARDENING TEMPERATURE


CCT GRAPH

TEMPERING

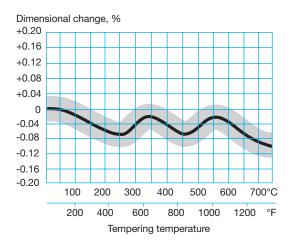
Choose the tempering temperature according to the hardness required by reference to the tempering graph.


Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 180°C (360°F). Holding time at temperature minimum 2 hours.

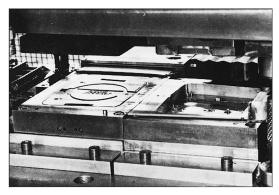
Transfer mould with Uddeholm Rigor inserts to produce encapsulated electronic components.

TEMPERING GRAPH

The tempering graphs are valid for small samples. The hardness received is also dependent on the tool size



DIMENSIONAL CHANGES DURING HARDENING


Sample plate, 100 x 100 x 25 mm, 4" x 4" x 1"

	Width %	Length %	Thickness %
Oil hardening from min. 960°C (1760°F) max.	-0.10 -0.05	-0.02 +0.06	-0.05
Martempering from 960°C min. (1760°F) max.	+0.04 +0.05	+0.06 +0.08	+0.04
Air hardening from min. 960°C (1760°F) max.	+0.08 +0.14	+0.13 +0.15	+0.04

DIMENSIONAL CHANGES DURING TEMPERING

Note: The dimensional changes on hardening and tempering should be added together.

This tool was made from Uddeholm Rigor. 3 million parts were manufactured before the tool was reground.

SUB-ZERO TREATMENT AND AGING

Pieces requiring maximum dimensional stability should be sub-zero and/or artificially aged as volume changes may arise in the course of time. This applies, for example, to measuring tools like gauges and certain structural components.

SUB-ZERO TREATMENT

Immediately after quenching, the piece should be sub-zero refrigerated to between -40 and -80°C (between -55 and -110°F) followed by tempering or aging. Sub-zero refrigeration for 2–3 hours will give a hardness increase of 1–3 HRC. Avoid intricate shapes as there is a risk of cracking.

AGEING

Tempering after quenching is replaced by ageing at 110–140°C (230–285°F). Holding time 25–100 hours.

NITRIDING

Nitriding will give a hard diffused surface layer which is very resistant to wear and erosion, and also increases corrosion resistance.

Nitriding in ammonia gas at a temperature of 525°C (975°F) gives a surface hardness of approx. 1000 HV₄.

Nitriding temperature °C °F		Nitriding time hours	Depth of case, approx.	
525	980	20	0.2	0.008
525	980	30	0.3	0.012
525	980	60	0.4	0.016

2 hours nitrocarburizing treatment at 570° C (1060°F) gives a surface hardness of approx. 900 HV₁. The case depth having this hardness will be 10– $20 \mu m$ (0.0004–0.0008").

MACHINING RECOMMENDATIONS

The cutting data below, valid for Uddeholm Rigor in soft annealed condition, are to be considered as guiding values which must be adapted to existing local conditions.

TURNING

	Turning carb	Turning with high speed steel	
Cutting data parameters	Rough turning	Fine turning	Fine turning
Cutting speed (v _c) m/min f.p.m.	110–160 360–525	160–210 525–690	18–23 60–75
Feed (f) mm/r i.p.r	0.2-0.4 0.008-0.016	0.05–0.2 0.002–0.008	0.05–0.3 0.002–0.012
Depth of cut (a _p) mm inch	2–4 0.08–0.16	0.5–2 0.02–0.08	0.5–2 0.02–0.08
Carbide designation ISO US	P20-P30 C6-C5 Coated carbide	P10 C7 Coated carbide or cermet	-

MILLING

FACE AND SQUARE SHOULDER MILLING

Cutting data	Milling with carbide		
Cutting data parameters	Rough milling	Fine milling	
Cutting speed (v _c) m/min f.p.m.	130–200 425–655	200–240 655–785	
Feed (f _z) mm/tooth inch/tooth	0.2–0.4 0.008–0.016	0.1–0.2 0.004–0.008	
Depth of cut (a _p) mm inch	2–4 0.08–0.16	-2 -0.08	
Carbide designation ISO US	P20-P40 C6-C5 Coated carbide	P10–P20 C7–C6 Coated carbide or cermet	

END MILLING

	Type of milling				
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel		
Cutting speed (v _c) m/min f.p.m.	80–120 260–395	120–170 395–560	15–20¹) 50–65¹)		
Feed (f _z) mm/tooth inch/tooth	0.03-0.20 ²⁾ 0.001-0.008 ²⁾	0.08-0.20 ²⁾ 0.003-0.008 ²⁾	0.05–0.35 ²⁾ 0.002–0.014 ²⁾		
Carbide designation ISO US	-	P20-P40 C6-C5	-		

 $^{^{1)}}$ For coated HSS end mill $\rm v_c = 30\text{--}35$ m/min. (100–115 f.p.m./min.)

DRILLING

HIGH SPEED STEEL TWIST DRILL

Drill diameter mm inch		Cutting speed (v _c) m/min f.p.m.			
- 5 5-10 10-15 15-20	3/16–3/8 3/8–5/8	14–16*	45–50* 45–50*	0.15–0.20 0.20–0.25	0.002-0.006 0.006-0.008 0.008-0.010 0.010-0.014

¹⁾ For coated HSS drill $v_c = 24-26$ m/min. (80–85 f.p.m./min.)

CARBIDE DRILL

	Type of drill				
Cutting data parameters	Indexable insert	Solid carbide	Carbide tip ¹⁾		
Cutting speed (v _o) m/min f.p.m.	150–170 490–560	80–100 260–330	50–60 165–195		
Feed (f) mm/r i.p.r	0.05–0.25 ²⁾ 0.002–0.01 ²⁾	0.10-0.25 ²⁾ 0.004-0.01 ²⁾	0.15–0.25 ²⁾ 0.006–0.01 ²⁾		

¹⁾ Drill with replaceable or brazed carbide tip

GRINDING

General grinding wheel recommendation for Uddeholm Rigor is given below. More information can be found in the Uddeholm brochure "Grinding of Tool Steel".

Type of grinding	Wheel recommodified soft annealed condition	mendation Hardened condition
Face grinding straight wheel	A 46 HV	A 46 HV
Face grinding segments	A 24 GV	A 36 GV
Cylindrical grinding	A 46 LV	A 60 KV
Internal grinding	A 46 JV	A 60 IV
Profile grinding	A 100 KV	A 120 JV

²⁾ Depending on radial depth of cut and cutter diameter

²⁾ Depending on drill diameter

WELDING

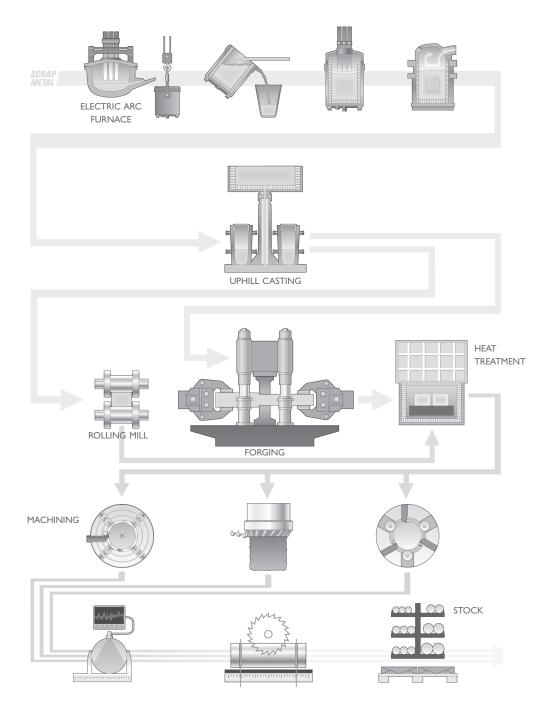
Good results when welding tool steel can be achieved if proper precautions are taken during welding (elevated working temperature, joint preparation, choice of consumables and welding procedure). If the tool is to be polished or photoetched, it is necessary to work with an electrode type of matching composition.

Welding method	Working temperature	Consumables	Hardness after welding	
MMA (SMAW)	200–250°C (390–480°F)	AWS E312 ESAB OK	300 HB	
, ,		84.52	53-54 HRC	
		UTP 67S	55-58 HRC	
		Castolin EutecTrode 2	54-60 HRC	
		Castolin EutecTrode N102	54-60 HRC	
TIG 200–250°C (390–480°F)		AWS ER312 UTPA 67S UTPA 73G2	300 HB 55–58 HRC 53–56 HRC	
		CastoTig 45303W	60–64 HRC	

ELECTRICAL DISCHARGE MACHINING-EDM

If EDM is performed in the hardened and tempered condition, the tool should then be given an additional temper at about 25°C (50°F) below the previous tempering temperature.

FURTHER INFORMATION


Please contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steel, including the publication "Steel for Cold Work Tooling".

RELATIVE COMPARISON OF UDDEHOLM COLD WORK TOOL STEEL

MATERIAL PROPERTIES AND RESISTANCE TO FAILURE MECHANISMS

	Hardness/				Resistance to		Fatigue cracking resistance	
Uddeholm grade	Resistance to plastic deformation	Machin- ability	Grind- ability	Dimension stability	Abrasive wear	Adhesive wear	Ductility/ resistance to chipping	Toughness/ gross cracking
Arne								
Calmax								
Caldie (ESR)								
Rigor								
Sleipner								
Sverker 21								
Sverker 3								
Vanadis 4 Extra*								
Vanadis 8*								
Vanadis 23*								
Vancron*								

^{*} Uddeholm PM SuperClean steel

THE CONVENTIONAL TOOL STEEL PROCESS

The starting material for our tool steel is carefully selected from high quality recyclable steel. Together with ferroalloys and slag formers, the recyclable steel is melted in an electric arc furnace. The molten steel is then tapped into a ladle.

The de-slagging unit removes oxygen-rich slag and after the de-oxidation, alloying and heating of the steel bath are carried out in the ladle furnace. Vacuum degassing removes elements such as hydrogen, nitrogen and sulphur.

In uphill casting the prepared moulds are filled with a controlled flow of molten steel from the ladle. From this, the steel goes directly to our rolling mill or to the forging press to be formed into round or flat bars.

HEAT TREATMENT

Prior to delivery all of the different bar materials are subjected to a heat treatment operation, either as soft annealing or hardening and tempering. These operations provide the steel with the right balance between hardness and toughness.

MACHINING

Before the material is finished and put into stock, we also rough machine the bar profiles to required size and exact tolerances.

In the lathe machining of large dimensions, the steel bar rotates against a stationary cutting tool. In peeling of smaller dimensions, the cutting tools revolve around the bar.

To safeguard our quality and guarantee the integrity of the tool steel we perform both surface- and ultrasonic inspections on all bars. We then remove the bar ends and any defects found during the inspection.

NETWORK OF EXCELLENCE

Uddeholm is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. We secure our position as the world's leading supplier of tooling materials.

Uddeholm is the world's leading supplier of tooling materials. This is a position we have reached by improving our customers' everyday business. Long tradition combined with research and product development equips Uddeholm to solve any tooling problem that may arise. It is a challenging process, but the goal is clear – to be your number one partner and tool steel provider.

Our presence on every continent guarantees you the same high quality wherever you are. We act worldwide. For us it is all a matter of trust – in long-term partnerships as well as in developing new products.

For more information, please visit www.uddeholm.com

