CUTTING DATA RECOMMENDATIONS Uddeholm Dievar 44-46 HRC Machining data are always dependent on the actual operation, the machine tool and the cutting data used. The machining data given is this datasheet are general guidelines that may have to be adjusted to the actual conditions of a specific machining operation. **UDDEHOLM** ## **Cutting data formulae** # **Turning** Cutting speed, $$v_c = \frac{\pi \cdot D \cdot n}{1000}$$ (m/min) Spindle speed, $$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$ (rev/min) *Material removal rate,* $Q = v_c \cdot a_p \cdot f \quad (cm^3 / min)$ Surface roughness, $$R_a \approx \frac{f^2 \cdot 50}{r_{\varepsilon}}$$ (μm) ### Legend v_c = Cutting speed (m/min) n = Spindle speed (rev/min) f = Feed per rev (mm/rev) $a_p = Axial depth of cut (mm)$ D = Workpiece diameter (mm) Q = Material removal rate (cm³/min) $R_a = Surface roughness (\mu m)$ e = Nose radius (mm) ## **Milling** $$v_c = \frac{\pi \cdot D \cdot n}{1000} (m/\text{min})$$ $$n = \frac{1000 \cdot vc}{\pi \cdot D} \text{ (rev/min)}$$ $$vf = fz \cdot z \cdot n = f \cdot n(\text{mm/min})$$ $$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} \text{ (mm)}$$ $$D_{eff} = 2 \cdot \sqrt{ap (D_i - ap)} + D - D_i \text{ (mm)}$$ $$h_m = f_z \cdot \sqrt{\frac{a_e}{D}} (\text{mm}) \frac{a_e}{D} < 0.3$$ $$Q = \frac{a_p \cdot a_e \cdot v_f}{1000} (\text{cm}^3/\text{min})$$ ## Legend v_c = Cutting speed (m/min) n = Spindle speed (rev/min) v_f = Feed speed (mm/min) $a_n = Axial depth of cut (mm)$ a_e = Radial depth of cut (mm) f = Feed per rev (mm/rev) z = Number of teeth f_z = Feed per tooth (mm/tooth) D = Cutter diameter (mm) D_{eff} = Effective cutter diameter (mm) D_i = Diameter of insert (mm) h_m = Average chip thickness (mm) Q = Material removal rate (cm³/min) ## **Drilling** Cutting speed, $$v_c = \frac{\pi \cdot D \cdot n}{1000}$$ (m/min) Spindle speed, $$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$ (rev/min) Feed speed, $v_f = f \cdot n \pmod{\min}$ Feed per rev, $$f = \frac{v_f}{n}$$ (mm/rev) #### Legend V_c = Cutting speed (m/min) n = Spindle speed (rev/min) /_f = Feed speed (mm/min) D = Drill diameter (mm) f = Feed per rev (mm/rev) ## **Turning** | Turning | | | | | | | |---------------------------------------|------------------------|---------------|--|--|--|--| | | Cemented carbide | | | | | | | | Roughing Finishing | | | | | | | Cutting speed, v _c (m/min) | 40-60 | 70-90 | | | | | | Feed, f (mm/rev) | 0,2-0,4 | 0,05-0,2 | | | | | | Depth of cut, a _p (mm) | 2-4 | 0,5-2 | | | | | | Suitable grades | P20-P30 coated carbide | | | | | | | | | mixed ceramic | | | | | #### Remarks: - 1. Cutting fluid is recommended. - 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade. # Face milling | Face milling | Cemente
Roughing | d carbide | |---------------------------------------|------------------------|------------------------| | Cutting speed, v _c (m/min) | 40-60 | 60-90 | | Feed, f _z (mm/tooth) | 0,2-0,3 | 0,1-0,2 | | Depth of cut, a _p (mm) | 1-2 | 0,5-1 | | | P20-P40 coated carbide | P10-P20 coated carbide | | Suitable grades | | or cermet | #### Remarks: - 1. Use a milling cutter with a positive-negative or positive-positive geometry. - 2. Climb milling should generally be used. - Milling should generally be done without coolant.If a high surface finish is required coolant may be used. - 4. Cermets can be of use when finishing under stable conditions. ## Square shoulder milling | Square shoulder milling with cemented carbide | | | | | | |---|-------------------------------|-------------------------------|--------------------|--|--| | | $a_{\rm e} = 0.1 \text{ x D}$ | $a_{\rm e} = 0.5 \text{ x D}$ | $a_e = 1 \times D$ | | | | Cutting speed, v _c (m/min) | 80-100 | 60-80 | 40-60 | | | | Feed, f _z (mm/tooth) | 0,2-0,3 | 0,1-0,2 | 0,05-0,1 | | | | Suitable grades | P15-P40 coated carbide | | | | | #### Remarks: - 1. Climb milling should generally be used. - 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously. - 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed. ## End milling | Slot milling Axial depth of cut, a _p = 1 x D | | ☐ Cutter diameter (mm) | | | | | |---|---------------------------------------|---|-----------------|-----------|---------------|-----------| | | | 3 - 5 | 5 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | | Coated HSS 1-4) | Cutting speed, v _c (m/min) | | | 5-10 | | | | | Feed, f _z (mm/tooth) | 0,01-0,03 | 0,03-0,04 | 0,04-0,05 | 0,05-0,06 | 0,06-0,09 | | Solid cemented | Cutting speed, v _c (m/min) | | 50-70 | | | | | carbide 5-8) | Feed, f _z (mm/tooth) | 0,006-0,01 | 0,01-0,02 | 0,02-0,04 | | | | Indexable insert 6-8) | Cutting speed, v _c (m/min) | | | | 50-70 | | | (cemented carbide | Feed, f _z (mm/tooth) | | | 0,06-0,08 | 0,08-0,10 | 0,10-0,12 | | inserts) | Suitable grades | | | P15- | P40 coated ca | ırbide | | Side milling | | For side milling the same cutting speed as for slot milling can | | | | | | Axial depth of cut, a _p = 1.5 x D | | be used, but the feeds must be adjusted in order to obtain a | | | | | | | | suitable avera | age chip thickn | ess. | | | ## **Correction factor for side milling** Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor. #### Remarks: (slot and side milling) - 1. Climb milling is generally recommended. - 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$. - 3. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 15%. - 4. Use liberal amounts of cutting fluid. - 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling. - 6. Climb milling is generally recommended. - 7. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 50%. - 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm. # Cavity milling | Rough milling with round carbide inserts | | | Diamet | er of cutter, | D (mm) | | |---|--------------------------------------|---------|-----------|---------------|-----------|-----------| | | 6-0 | <20 | 21-30 | 31-40 | 41-50 | >50 | | Axial depth of cut, | Cutting speed v _c (m/min) | 80- | 100 | | 60-80 | | | $ap = 0.2 \times D_i$ | Feed f _z (mm/tooth) | -0,15 | 0,15-0,18 | 0,18-0,22 | 0,22-0,25 | 0,25-0,28 | | Axial depth of cut,
ap = 0,15 x D _i | Cutting speed vc (m/min) | 80-100 | | 60-80 | | | | | Feed f _z (mm/tooth) | -0,17 | 0,18-0,21 | 0,21-0,25 | 0,25-0,27 | 0,27-0,30 | | Axial depth of cut, | Cutting speed vc (m/min) | 100 | -120 | | 80-100 | | | $ap = 0.1 \times D_i$ | Feed f _z (mm/tooth) | -0,2 | 0,20-0,25 | 0,25-0,28 | 0,28-0,32 | 0,32-0,35 | | Axial depth of cut, | Cutting speed vc (m/min) | 120-140 | | 100-120 | | | | $ap = 0.05 \times D_i$ | Feed f _z (mm/tooth) | -0,25 | 0,25-0,3 | 0,3-0,35 | 0,35-0,38 | 0,38-0,42 | D_i = Diameter of the insert | Rough milling with high feed cutters | Diameter of cutter, D (mm) | | | | | | |--------------------------------------|--------------------------------|------|---------|---------|---------|---------| | | 40 | <20 | 21-30 | 31-40 | 41-50 | >50 | | Axial depth of cut, | Cutting speed vc (m/min) | 70- | 100 | | 50-70 | | | ap = 70% of max ¹⁾ | Feed f _z (mm/tooth) | -0,3 | 0,3-0,5 | 0,5-0,7 | 0,7-1,0 | 0,7-1,0 | | Axial depth of cut, | Cutting speed vc (m/min) | 80- | 110 | | 70-100 | | | $ap = 50\% \text{ of } max^{1)}$ | Feed f _z (mm/tooth) | -0,5 | 0,5-0,7 | 0,7-0,9 | 0,9-1,1 | 1,0-1,2 | ¹⁾ Per centage of maximum depth of cut allowed (according to milling tool supplier) | Semi finishing and finishing milling with ballnose cutters | | Diameter of cutter, D (mm) | | | | | |--|--------------------------------|----------------------------|----------|-----------|-----------|-------| | | \bigcirc | <6 | 6-8 | 8-10 | 10-12 | >12 | | Semi finishing Axial depth of cut, | Cutting speed vc (m/min) | | | 120-140 | | | | ap = 5% of D (Ø cutter) | Feed f _z (mm/tooth) | -0,08 | 0,08-0,1 | 0,1-0,12 | 0,12-0,14 | 0,14- | | Finishing | Cutting speed vc (m/min) | | | 140-160 | | | | Axial depth of cut,
ap = 2% of D (Ø cutter) | Feed f _z (mm/tooth) | -0,1 | 0,1-0,12 | 0,12-0,14 | 0,14-0,16 | 0,16- | $$D_{eff} = 2 \cdot \sqrt{ap (D - ap)}$$ (mm) ## Remarks cavity milling: - 1. Down milling strategy is recommended - 2. Recommended cutting speeds are at the effective cutter diameter (Deff) - 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD - 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (D eff) - 5. A tough PVD coated carbide grade with sharp edge geometry is recommended ## Uddeholm Dievar 44-46 HRC ## Drilling | Drilling | | | | | | | |----------------------------------|---------------------------------------|---------------------|-----------|-----------|-----------|-----------| | | | Drill diameter (mm) | | | | | | | | 1 - 5 | 5 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | | Coated HSS 1-2) | Cutting speed, v _c (m/min) | | | 6-8 | | | | | Feed, f (mm/rev) | 0,05-0,1 | 0,1-0,15 | 0,15-0,2 | 0,2-0,25 | 0,25-0,3 | | Indexable insert ³⁻⁴⁾ | Cutting speed, v _c (m/min) | | | | 70 | -90 | | (cem. carbide inserts) | Feed, f (mm/rev) | | | | 0,05-0,10 | 0.10-0,15 | | Solid cemented | Cutting speed, v _c (m/min) | | | 60 | -80 | | | carbide 5-7) | Feed, f (mm/rev) | | 0,08-0,10 | 0,10-0,18 | 0,18-0,26 | 0,26-0,3 | | Carbide tipped 5-7) | Cutting speed, v _c (m/min) | | | | 60-80 | | | | Feed, f (mm/rev) | | | 0,12-0,2 | 0,20,28 | 0,28-0,35 | #### Remarks: - 1. The cutting fluid should be ample and directed at the tool. - 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased. - Use insert grades in the range of ISO P20-P30. Under unstable conditions a tougher carbide grade should be used for the centre position. - 4. Use a high cutting fluid pressure and flow rate for a good chip removal. - 5. If machining with solid carbide or carbide tipped drills, a rigid set-up and stable working conditions are required. - 6. The use of drills with internal cooling channels is recommended. - 7. Use a cutting fluid concentration of 15-20 %. ## Tapping with HSS | Cutting speed, $v_c =$ | 2-3 m/min | |------------------------|-----------| #### Remarks: - 1. Threading compound or cutting oil gives a longer tool life than emulsion. - 2. TiCN coated taps are recommended. - 3. Straight fluted taps are recommended for both through holes and blind holes.