UDDEHOLM VANAX® SUPERCLEAN

CRODIC INDER OF THE LAND OF TH

© UDDEHOLMS AB

No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder.

 $Vanax^{\tiny{\circledR}}$ SuperClean is a trade mark registered in the European Union and in the U.S.

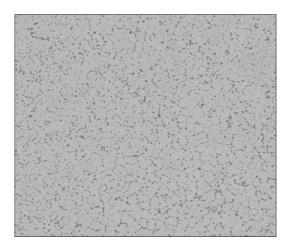
This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Edition 1, 05.2015

The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com

SS-EN ISO 9001 SS-EN ISO 14001


General

Uddeholm Vanax SuperClean is a Cr-Mo-V-N alloyed steel characterized by:

- Excellent corrosion resistance
- High mechanical strength
- · Good ductility
- · Good mixed wear resistance
- · Good through hardening properties
- · Good dimension stability at hardening

Via a process route based on powder metallurgy a high nitrogen steel is produced with unique property combinations of hardness, wear resistance, ductility and corrosion resistance. In Uddeholm Vanax SuperClean most of the carbon is substituted by nitrogen, modifying the traditional chromium carbides into carbonitrides. These carbonitrides are less harmful when it comes to corrosion resistance compared to chromium carbides.

Typical analysis %	C 0.36	N 1.55	Si 0.30	Mn 0.30	Cr 18.2	Mo 1.10	V 3.50
Delivery condition	Soft annealed to approx. 260 HB						
Colour code	Grey/Dark blue						

Uddeholm Vanax SuperClean – Approx. 13% hard phase particles 60 HRC. 1080° C $(1975^{\circ}F)/DC + 200^{\circ}$ C $(390^{\circ}F)/2 \times 2h$

Applications

Uddeholm Vanax SuperClean has an excellent corrosion resistance both in low and high temperature tempered condition in combination with good wear resistance to counteract mixed wear/galling/fretting. Applications are e.g. found in plastic moulding, food processing and engineering constructions.

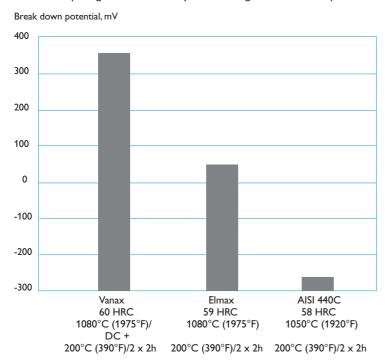
Typical applications are:

- Plastic mould components requiring high corrosion resistance, fretting resistance, and/ or mould release properties
- Hand knives
- · Components and knives in food processing
- Wear parts in corrosive environments
- Wear parts in sliding and rolling engineering applications
- Highly stressed machine parts in corrosive environments

Properties

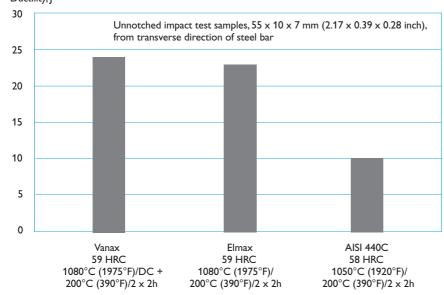
Physical data

Hardened, sub-zero treated and tempered to 60 HRC.


Temperature	20°C (68°F)	200°C (390°F)	400°C (750°F)
Density kg/m ³ lbs/in ³	7 570 0.273	7 525 0.272	7 470 0.270
Modulus of elasticity GPa ksi	224 32 x 10 ³	213 30.5 x 10 ³	195 28 × 10 ³
Coefficient of thermal expansion per °C from 20°C per °F from 68°F	-	10.7 x 10 ⁻⁶ 5.9 x 10 ⁻⁶	11.8 x 10 ⁻⁶ 6.5 x 10 ⁻⁶
Thermal conductivity W/m °C Btu in/(ft²h °F)	13 90	16 110	20 138
Specific heat J/kg °C Btu/lb, °F	505 0.12	580 0.14	660 0.16

Corrosion resistance

In carbon based high chromium alloys the solid solution of chromium is modest as a lot is tied up as chromium carbides thereby affecting corrosion properties negatively.

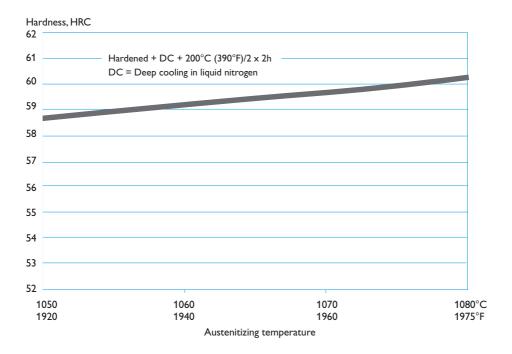

Uddeholm Vanax SuperClean has a high content of dissolved chromium, molybdenum and nitrogen in the matrix, which results in excellent corrosion properties.

Break down potential in 0.1 M NaCl (0.35% Cl), pH = 7 and 20° C (70° F). Initiation of pitting corrosion is delayed with a higher break down potential.

Ductility

Conventionally produced grades of similar hardness and wear response have an uneven distribution of large carbides and therefore a lower ductility than PM grades. Uddeholm Vanax SuperClean has a ductility similar to Uddeholm Elmax. Ductility, J

Heat treatment


The recommended austenitizing temperature for Uddeholm Vanax SuperClean is 1080°C (1975°F) with 30 minutes holding time followed by deep cooling at -196°C (-320°F) to minimize the amount of retained austenite.

For best corrosion properties low temperature tempering at 200°C (390°F)/2 x 2h is recommended. If the product application conditions require a higher tempering temperature Uddeholm Vanax SuperClean can be tempered up to 450°C (840°F) or even 500°C (930°F) without significant loss of corrosion properties.

When hardening in vacuum furnaces it is recommended to apply a nitrogen partial pressure of 150–200 mbar to counteract loss of N on the surface.

As the steel will contain approx. 10% retained austenite after the recommended heat treatment procedure, 1080°C (1975°F)/30 min + DC + 200°C (390°F)/2 x 2h, the dimensions will decrease approx. 0.1% after heat treatment. Enough machining allowance must therefore be included for this shrinkage in dimension.

The hardenability of Uddeholm Vanax SuperClean is adequate to ensure good through hardening properties at gas quenching in vacuum furnaces.

Machining recommendations

The cutting data recommendations below are to be considered as guidelines and may require adjustments based on equipment, selection of cutting tools, etc. More information can be found in the Uddeholm publication "Cutting data recommendations".

The recommendations in the following tables are valid for Uddeholm Vanax SuperClean in soft annealed condition.

Turning

	Turning w	Turning with high speed	
Cutting data parameter	Rough turning	Fine turning	steel Fine turning
Cutting speed (v _c) m/min f.p.m.	100–150 330–490	150–200 490–655	12–15 39–49
Feed (f) mm/r i.p.r.	0.2–0.4 0.008–0.016	0.05–0.2 0.002–0.008	0.05–0.3 0.002–0.01
Depth of cut (a _p) mm inch	2–4 0.08–0.16	0.5–2 0.02–0.08	0.5–3 0.02–0.1
Carbide designation ISO	K20, P20* Coated carbide	K15* Coated carbide or cermet	-

^{*} Use a wear resistant Al₂O₃ coated grade

Drilling

HIGH SPEED STEEL TWIST DRILLS

	diameter	Cutting speed (v _c)		Fee mm/r	ed (f)	
mm	incn	m/min	f.p.m.	mm/r	i.p.r.	
-5	-3/16	10–12*	33–39*	0.05-0.10	0.002-0.004	
5–10	3/16-3/8	10-12*	33-39*	0.10-0.20	0.004-0.008	
10–15	3/8-5/8	10-12*	33-39*	0.20-0.25	0.008-0.010	
15–20	5/8–3/4	10–12*	33–39*	0.25-0.30	0.010-0.014	

^{*}For coated HSS drill v_c =16–18 m/min. (52–59 f.p.m.)

CARBIDE DRILL

	Type of drill			
Cutting data parameter	Indexable insert	Solid carbide	Carbide tipped ¹⁾	
Cutting speed, (v _c) m/min f.p.m.	90–120 295–395	60–80 200–260	40–60 130–200	
Feed, (f) mm/r i.p.r.	0.05-0.15 ²⁾ 0.002-0.006 ²⁾	0.10-0.25 ²⁾ 0.004-0.01 ²⁾	0.15-0.25 ²⁾ 0.006-0.01 ²⁾	

 $^{^{1)}}$ Drill with replaceable or brazed carbide tip

Milling

FACE AND SQUARE SHOULDER FACE MILLING

	Milling with carbide		
Cutting data parameter	Rough milling	Fine milling	
Cutting speed (v _c) m/min f.p.m.	80–100 260–330	100–120 330–390	
Feed (f _z) mm/tooth in/tooth	0.2–0.4 0.008–0.016	0.1–0.2 0.004–0.008	
Depth of cut (a _p) mm inch	2–4 0.08–0.16	-2 -0.08	
Carbide designation ISO	K20, P20* Coated carbide	K15, P15* Coated carbide or cermet	

^{*} Use a wear resistant Al₂O₃ coated grade

END MILLING

	Type of end mill		
Cutting data parameter	Solid carbide	Carbide indexable insert	High speed steel ¹⁾
Cutting speed (v _c) m/min f.p.m.	40–50 130–160	70–90 320–295	12–15 39–49
Feed (f _z) mm/tooth in/tooth	0.03-0.20 ²⁾ 0.001-0.008 ²⁾	0.08-0.20 ²⁾ 0.003-0.008 ²⁾	0.05-0.35 ²⁾ 0.002-0.014 ²⁾
Carbide designation ISO	_	P15, K20 ³⁾	-

¹⁾ For coated HSS end mill $v_c = 20-30$ m/min. (66–100 f.p.m.)

Grinding

A general grinding wheel recommendation is given below. More information can be found in the Uddeholm publication "Grinding of tool steel".

Type of grinding	Wheel recommendation Annealed Hardened condition condition		
Face grinding straight wheel	A 46 HV	B151 R50 B3 ¹⁾ A 46 HV ²⁾	
Face grinding segments	A 36 GV	A 46 GV	
Cylindrical grinding	A 60 KV	B151 R50 B3 ¹⁾ A 60 KV ²⁾	
Internal grinding	A 60 JV	B151 R75 B3 ¹⁾ A 60 IV	
Profile grinding	A 100 JV	B126 R100 B6 ¹⁾ A 120 JV ²⁾	

¹⁾ If possible, use CBN-wheels for this application

²⁾ Depending on drill diameter

 $^{^{2)}}$ Depending on radial depth of cut and cutter diameter

 $^{^{3)}}$ Use a wear resistant Al_2O_3 coated grade

 $^{^{1)}\,}Preferable$ a wheel type containing ceramic Al_2O_3

Network of excellence

UDDEHOLM is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. ASSAB is our exclusive sales channel, representing Uddeholm in various parts of the world. Together we secure our position as the world's leading supplier of tooling materials.

UDDEHOLM is the world's leading supplier of tooling materials. This is a position we have reached by improving our customers' everyday business. Long tradition combined with research and product development equips Uddeholm to solve any tooling problem that may arise. It is a challenging process, but the goal is clear – to be your number one partner and tool steel provider.

Our presence on every continent guarantees you the same high quality wherever you are. ASSAB is our exclusive sales channel, representing Uddeholm in various parts of the world. Together we secure our position as the world's leading supplier of tooling materials. We act worldwide, so there is always an Uddeholm or ASSAB representative close at hand to give local advice and support. For us it is all a matter of trust – in long-term partnerships as well as in developing new products. Trust is something you earn, every day.

For more information, please visit www.uddeholm.com, www.assab.com or your local website.

PROBLEMS AUTOHOTIVE