Cutting data recommendations

Uddeholm Sverker® 3

Turning

Cutting data formulae

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Material removal rate, $Q = v_c \cdot a_p \cdot f$ (cm³/min)
Surface roughness, $R_a \approx \frac{f^2 \cdot 50}{r_c}$ (μ m)

Milling

$$v_{c} = \frac{\pi \cdot D \cdot n}{1000} (m/\min)$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} (rev/\min)$$

$$vf = fz \cdot z \cdot n = f \cdot n(mm/\min)$$

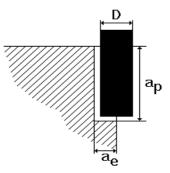
$$h_{m} = fz \cdot \sqrt{\frac{ae}{D}} (mm) \frac{ae}{D} < 0.3$$

$$Q = \frac{a_{p} \cdot ae \cdot vf}{1000} (cm^{3}/\min)$$

Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Feed speed, $v_f = f \cdot n$ (mm/min)
Feed per rev, $f = \frac{v_f}{n}$ (mm/rev)

Legend


f

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
 - = Feed per rev (mm/rev)
- a_p = Axial depth of cut (mm)
- D = Workpiece diameter (mm)
- Q = Material removal rate (cm^3/min)
- $R_a = Surface roughness (\mu m)$
- r_e = Nose radius (mm)

Legend

n

- v_c = Cutting speed (m/min)
 - = Spindle speed (rev/min)
- v_f = Feed speed (mm/min)
- a_p = Axial depth of cut (mm)
- a_e = Radial depth of cut (mm)
- f = Feed per rev (mm/rev)
- z = Number of teeth
- f_z = Feed per tooth (mm/tooth)
- D = Cutter diameter (mm)
- h_m = Average chip thickness (mm)
- Q = Material removal rate (cm³/min)

Legend

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
- v_f = Feed speed (mm/min)
- D = Drill diameter (mm)
- f = Feed per rev (mm/rev)

Turning

Uddeholm Sverker 3

l urning						
	Cemente	HSS				
	Roughing	Finishing				
Cutting speed, v_c (m/min)	70-100	100-150	8-12			
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3			
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3			
Suitable grades	P20-P30 coated carbide	P10 coated carbide or				
		cermet				

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling					
	Cemented carbide				
	Roughing	Finishing			
Cutting speed, v_c (m/min)	80-110	110-140			
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2			
Depth of cut, a _p (mm)	2-5	-2			
	P20-P40 coated carbide	P10-P20 coated carbide			
Suitable grades		or cermet			

Remarks:

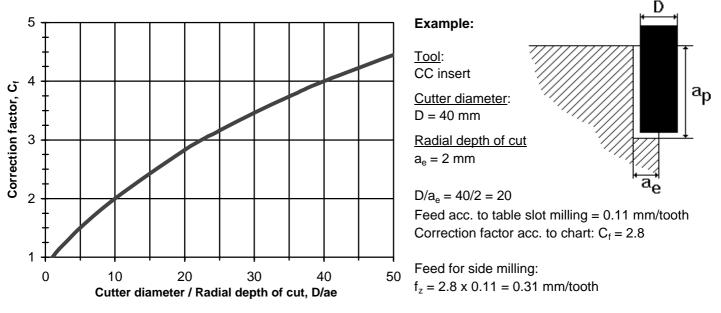
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant.
- If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide					
	a _e = 0.1 x D	a _e = 0.5 x D	a _e = 1 x D		
Cutting speed, v _c (m/min)	70-110	60-100	60-90		
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15		
Suitable grades	P15-P40 coated carbide				

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Sverker 3

Slot milling						
Axial depth of cut, $a_p = 1 \times D$		Cutter diameter (mm)				
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)			10-15		
	Feed, f _z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Coated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)	tting speed, v _c (m/min) 20-25				
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0,10
Solid cemented Cutting speed, v _c (m/min)		30-70			-	
carbide 5-8)	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v_c (m/min)			40-80		
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades	P15-P40 coated carbide				
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can				
		be used, but the feeds must be adjusted in order to obtain a				
		suitable average chip thickness.				

Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, a $_{e}$ > 0.3 xD.
- 3. When side milling with small radial depths of cut (a _e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools.
- The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a _e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Drilling

Uddeholm Sverker 3

Drilling		_				
		Drill diameter (mm)			_	
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS ¹⁻²⁾	Cutting speed, v_c (m/min)			10-12		
	Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Coated HSS ¹⁻²⁾	Cutting speed, v_c (m/min)	16-18				
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50
Indexable insert ³⁻⁴⁾	Cutting speed, v _c (m/min)		100-130 0,05-0,10 0,10-0,15			-130
(cem. carbide inserts)	Feed, f (mm/rev)					0,10-0,15
Solid cemented	Cutting speed, v_c (m/min)		50-70			
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Brazed cemented	Cutting speed, v_c (m/min)	30-40				
carbide 5-7)	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, $v_c = 7-9$ m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can with advantage be used.