Cutting data recommendations

Uddeholm QRO® 90 HT

Turning QRO 90 HT

Turning			
	Cemente	d carbide	HSS
	Roughing	Finishing	
Cutting speed, v _c (m/min)	90-130	130-180	8-13
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3
Suitable grades	P20-P30 coated carbide	P10 coated carbide or	
		mixed ceramic	

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling	Cemente Roughing	d carbide
Cutting speed, v _c (m/min)	100-140	140-170
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2
Depth of cut, a _p (mm)	2-5	-2
	P20-P40 coated carbide	P10-P20 coated carbide
Suitable grades		or cermet

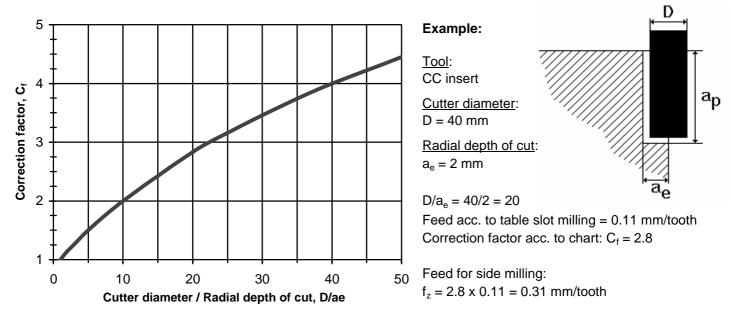
Remarks:

- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant. If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide						
<u> </u>	a _e = 0.1 x D	$a_{\rm e} = 0.5 \text{ x D}$	a _e = 1 x D			
Cutting speed, v _c (m/min)	90-130	80-120	70-110			
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15			
Suitable grades	P15-P40 coated carbide					

Remarks:


- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.

End milling QRO 90 HT

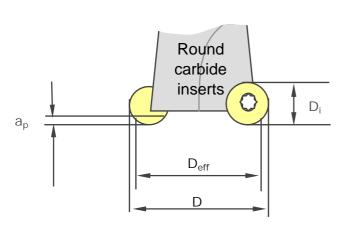
Slot milling							
Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)					
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			8-12			
	Feed, f _z (mm/tooth)	0,01-0,03	0,02-0,03	0,04-0,05	0,05-0,06	0,06-0,09	
Coated HSS 1-4)	Cutting speed, v _c (m/min)			20-25			
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0,10	
Solid cemented	Cutting speed, v _c (m/min)		60-100				
carbide ⁵⁻⁸⁾	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04			
Indexable insert 6-8)	Cutting speed, v _c (m/min)				80-120		
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12	
inserts)	Suitable grades			P15-	P40 coated ca	ırbide	
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can					
		be used, but the feeds must be adjusted in order to obtain a					
	suitable average chip th		age chip thickn	ess.			

Correction factor for side milling

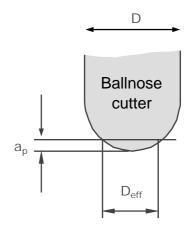
Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.


Rough milling with round carbide inserts		Diameter of cutter, D (mm)				
		<20	21-30	31-40	41-50	>50
Axial depth of cut,	Cutting speed v _c (m/min)			120-140		
$ap = 0.2 \times D_i$	Feed f _z (mm/tooth)	-0,15	0,15-0,18	0,18-0,22	0,22-0,25	0,25-0,28
Axial depth of cut,	Cutting speed vc (m/min)	130-150				
$ap = 0.15 \times D_i$	Feed f _z (mm/tooth)	-0,17	0,18-0,21	0,21-0,25	0,25-0,27	0,27-0,30
Axial depth of cut,	Cutting speed vc (m/min)			140-160		
$ap = 0.1 \times D_i$	Feed f _z (mm/tooth)	-0,2	0,20-0,25	0,25-0,28	0,28-0,32	0,32-0,35
Axial depth of cut,	Cutting speed vc (m/min)			150-170		
$ap = 0.05 \times D_i$	Feed f _z (mm/tooth)	-0,25	0,25-0,3	0,3-0,35	0,35-0,38	0,38-0,42

D_i = Diameter of the insert


Rough milling with high feed cutters	Į.	<20	Diamet 21-30	er of cutter, l	D (mm) 41-50	>50
Axial depth of cut,	Cutting speed vc (m/min)	420	2.00	120-140	11 00	700
$ap = 70\% \text{ of } max^{1)}$	Feed f _z (mm/tooth)	-0,3	0,3-0,5	0,5-0,7	0,7-1,0	0,7-1,0
Axial depth of cut,	Cutting speed vc (m/min)			130-150		
ap = 50% of max ¹⁾	Feed f _z (mm/tooth)	-0,5	0,5-0,7	0,7-0,9	0,9-1,1	1,0-1,2

¹⁾ Per centage of maximum depth of cut allowed (according to milling tool supplier)

Semi finishing and finishing milling with b	pallnose cutters		ı	er of cutter,		
	ψ	<6	6-8	8-10	10-12	>12
Semi finishing Axial depth of cut,	Cutting speed vc (m/min)			140-160		
ap = 5% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,21	0,21-0,23	0,23-0,25	0,25-0,28	0,28-
Finishing	Cutting speed vc (m/min)	180-200				
Axial depth of cut, ap = 2% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,1	0,1-0,12	0,12-0,14	0,14-0,16	0,16-

$$D_{eff} = 2 \cdot \sqrt{ap(D_i - ap)} + D - D_i \text{(mm)}$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} \text{ (mm)}$$

Remarks cavity milling:

- 1. Down milling strategy is recommended
- 2. Recommended cutting speeds are at the effective cutter diameter (Deff)
- 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD
- 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (D eff)
- 5. A tough PVD coated carbide grade with sharp edge geometry is recommended

Drilling QRO 90 HT

Drilling						
		Drill diameter (mm)				
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			10-12		
	Feed, f (mm/rev)	0,05-0,12	0,15-0,22	0,22-0,32	0,32-0,38	0,38-0,42
Coated HSS 1-2)	Cutting speed, v _c (m/min)			16-18		
	Feed, f (mm/rev)	0,07-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Indexable insert ³⁻⁴⁾	Cutting speed, v _c (m/min)				150	-170
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0,10-0,15
Solid cemented	Cutting speed, v _c (m/min)			100	-130	
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Brazed cemented	Cutting speed, v _c (m/min)				50-70	
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, v_c = 6-8 m/min

Remarks:

1. Threading compound or cutting oil gives a longer tool life than emulsion.