Cutting data recommendations

Uddeholm Orvar® 2M

Turning

Cutting data formulae

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Material removal rate, $Q = v_c \cdot a_p \cdot f$ (cm³/min)
Surface roughness, $R_a \approx \frac{f^2 \cdot 50}{r_c}$ (μ m)

Milling

$$v_{c} = \frac{\pi \cdot D \cdot n}{1000} (m/\min)$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} (rev/\min)$$

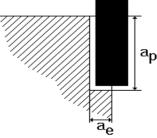
$$vf = fz \cdot z \cdot n = f \cdot n(mm/\min)$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} + D - D_{i} (mm)$$

$$h_{m} = fz \cdot \sqrt{\frac{ae}{D}} (mm) \frac{ae}{D} < 0.3$$

$$Q = \frac{ap \cdot ae \cdot vf}{1000} (cm^{3}/\min)$$


Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Feed speed, $v_f = f \cdot n$ (mm/min)
Feed per rev, $f = \frac{v_f}{n}$ (mm/rev)

Legend

f

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
 - = Feed per rev (mm/rev)
- a_p = Axial depth of cut (mm)
- D = Workpiece diameter (mm)
- Q = Material removal rate (cm^3/min)
- $R_a = Surface roughness (\mu m)$
- r_e = Nose radius (mm)
- Legend Vc = Cutting speed (m/min) = Spindle speed (rev/min) n = Feed speed (mm/min) Vf a_p = Axial depth of cut (mm) = Radial depth of cut (mm) a_{e} = Feed per rev (mm/rev) f = Number of teeth z = Feed per tooth (mm/tooth) f_z D = Cutter diameter (mm) D_{eff} = Effective cutter diameter (mm) Di = Diameter of insert (mm) = Average chip thickness (mm) h_m = Material removal rate (cm³/min) Q D

Legend

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
- v_f = Feed speed (mm/min)
- D = Drill diameter (mm)
- f = Feed per rev (mm/rev)

Turning

Uddeholm Orvar 2M

l urning			
	Cemente	HSS	
	Roughing	Finishing	
Cutting speed, v_c (m/min)	200-250	250-300	25-30
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3
Suitable grades	P20-P30 coated carbide	P10 coated carbide or	
		cermet	

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling							
	Cemented carbide						
	Roughing	Finishing					
Cutting speed, v_c (m/min)	200-260	260-300					
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2					
Depth of cut, a _p (mm)	2-5	-2					
	P20-P40 coated carbide	P10-P20 coated carbide					
Suitable grades		or cermet					

Remarks:

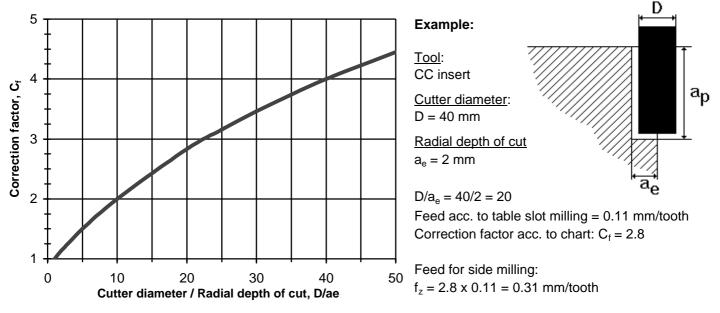
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant.
- If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide						
<u> </u>	a _e = 0.1 x D	a _e = 0.5 x D	a _e = 1 x D			
Cutting speed, v _c (m/min)	200-260	190-250	180-240			
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15			
Suitable grades	P15-P40 coated carbide					

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Orvar 2M

Slot milling Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)				
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)			35-40		
	Feed, f _z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Coated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)			55-60		
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0,10
Solid cemented	Cutting speed, v_c (m/min)		160-200	-		-
carbide 5-8)	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v_c (m/min)				170-230	
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades			P15-	P40 coated ca	irbide
Side milling		For side millir	ng the same cu	utting speed as	for slot milling	can
Axial depth of cut,	Axial depth of cut, $a_p = 1.5 \times D$		be used, but the feeds must be adjusted in order to obtain a			
		suitable average chip thickness.				

Correction factor for side milling

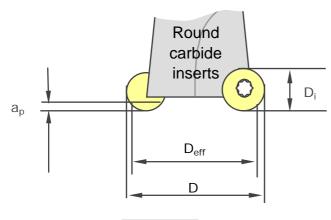
Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f, this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

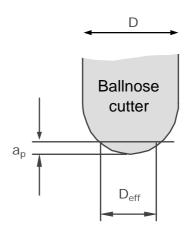
- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a $_{e}$) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools.
- The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a $_{e}$) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Cavity milling with carbide

Uddeholm Orvar 2M


Rough milling with round carbide inserts			Diamet	er of cutter, l	D (mm)	
	G-O	<20	21-30	31-40	41-50	>50
Axial depth of cut,	Cutting speed v_c (m/min)			200-220		
$ap = 0.2 \times D_i$	Feed f _z (mm/tooth)	-0,18	0,19-0,21	0,22-0,24	0,25-0,27	0,28-
Axial depth of cut,	Cutting speed vc (m/min)			220-240		
$ap = 0,15 \times D_i$	Feed f _z (mm/tooth)	-0,2	0,21-0,23	0,24-0,26	0,27-0,29	0,3-
Axial depth of cut,	Cutting speed vc (m/min)			240-260		
$ap = 0,1 \times D_i$	Feed f _z (mm/tooth)	-0,23	0,24-0,26	0,27-0,29	0,3-0,32	0,33-
Axial depth of cut,	Cutting speed vc (m/min)			260-300		
$ap = 0.05 \times D_i$	Feed f _z (mm/tooth)	-0,31	0,32-0,34	0,35-0,37	0,38-0,4	0,41-
D_{i} = diameter of the insert						

= diameter of the insert


Rough milling with high feed cutters	Ģ	<20	Diamet 21-30	er of cutter, 31-40	D (mm) 41-50	>50
Axial depth of cut,	Cutting speed vc (m/min)			200-220		
$ap = 100\% \text{ of } max^{1)}$	Feed f _z (mm/tooth)	-0,6	0,6-0,8	0,8-1,0	1,0-1,2	1,2-
Axial depth of cut,	Cutting speed vc (m/min)			220-240		
$ap = 50\% \text{ of } max^{1)}$	Feed f _z (mm/tooth)	-0,8	0,8-1,0	1,0-1,2	1,2-1,4	1,4-

¹⁾ per centage of maximum depth of cut allowed (according to milling tool supplier)

Semi finishing and finishing milling with b	allnose cutters	<6	Diamet 6-8	er of cutter, 8-10	D (mm) 10-12	>12
Semi finishing	Cutting speed vc (m/min)			280-300		
Axial depth of cut, ap = 5% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,08	0,08-0,10	0,10-0,12	0,12-0,14	0,14-
Finishing	Cutting speed vc (m/min)			300-320		
Axial depth of cut, ap = 2% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,12	0,12-0,14	0,14-0,16	0,16-0,18	0,18-

$$D_{eff} = 2 \cdot \sqrt{ap(D_i - ap)} + D - D_i (\text{mm})$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$$

Remarks cavity milling:

- 1. Down milling strategy is recommended
- 2. Recommended cutting speeds are at the effective cutter diameter (D_{eff})
- 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD
- 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (D $_{\rm eff}$)

Drilling

Uddeholm Orvar 2M

Drilling						
		Drill diameter (mm)				
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS ¹⁻²⁾	Cutting speed, v _c (m/min)			16-18		
	Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Coated HSS ¹⁻²⁾	Cutting speed, v_c (m/min)			28-30		
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50
Indexable insert ³⁻⁴⁾	Cutting speed, v _c (m/min)				220	-240
(cem. carbide inserts)	Feed, f (mm/rev)				0,03-0,08	0,08-0,12
Solid cemented	Cutting speed, v_c (m/min)			130	-160	
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Carbide tipped ⁵⁻⁷⁾	Cutting speed, v_c (m/min)				80-110	
	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid carbide or carbide tipped drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, $v_c = 10-12$ m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can be used.