Cutting data recommendations

Uddeholm Vancron SuperClean

Turning

Uddeholm Vancron® SuperClean

Turning						
	Cemente	HSS				
	Roughing	Finishing				
Cutting speed, v _c (m/min)	70-100	100-120	8-10			
Feed, f (mm/rev)	0,3-0,6	0,05-0,3	0,05-0,3			
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3			
Suitable grades	K20-P20 coated carbide	K15,P15 coated carbide				

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling					
	Cemented carbide				
	Roughing	Finishing			
Cutting speed, v _c (m/min)	60-80	80-120			
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2			
Depth of cut, a _p (mm)	2-4	- 2			
	K20 P20 coated carbide	K15,P15 coated carbide			
Suitable grades					

Remarks:

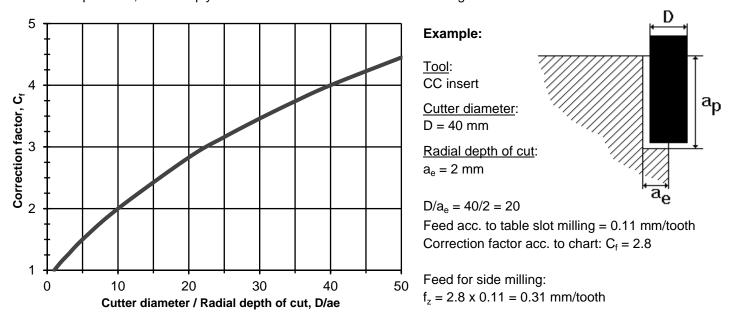
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- Milling should generally be done without coolant.If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide					
	$a_{e} = 0.1 \times D$	a _e = 0.5 x D	$a_e = 1 \times D$		
Cutting speed, v _c (m/min)	110-130	90-110	70-90		
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15		
Suitable grades	K20, P20 coated carbide				

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Vancron® SuperClean

Slot milling						
Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)				
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			5-8		
	Feed, f _z (mm/tooth)	0,008-0,02	0,02-0,03	0,03-0,04	0,04-0,05	0,05-0,08
Coated HSS 1-4)	Cutting speed, v _c (m/min)	ed, v _c (m/min) 12-16				
	Feed, f _z (mm/tooth)	0,015-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Solid cemented	Cutting speed, v _c (m/min)	35-45				
carbide ⁵⁻⁸⁾	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v _c (m/min)			80-100		
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades	K15 -P20 coated carbide		rbide		
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can				
		be used, but the feeds must be adjusted in order to obtain a				
		suitable average chip thickness.				

Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Drilling

Uddeholm Vancron® SuperClean

Drilling						
		Drill diameter (mm)				
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			8-10		
	Feed, f (mm/rev)	0,05-0,10	0,10-0,20	0,20-0,30	0,30-0,35	0,35-0,40
Coated HSS 1-2)	Cutting speed, v _c (m/min)	14-18				
	Feed, f (mm/rev)	0,07-0,18	0,18-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Indexable insert 3-4)	Cutting speed, v _c (m/min)		90-120			120
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0,10-0,15
Solid cemented	Cutting speed, v _c (m/min)		50 - 70			
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Brazed cemented	Cutting speed, v _c (m/min)	25 - 35				
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- 3. TiCN-coating is recommended when drilling with coated HSS.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 5. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 6. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 7. The use of drills with internal cooling channels is recommended.
- 8. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, vc=

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can with advantage be used.