Uddeholm Mirrax® 40

© UDDEHOLMS AB

Diese Broschüre und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der durch das Urheberrechtsgesetz festgelegten Grenzen ist ohne schriftliche Zustimmung des Herausgebers unzulässig.

Die Angaben in dieser Broschüre basieren auf unserem gegenwärtigen Wissensstand und vermitteln nur allgemeine Informationen über unsere Produkte und deren Anwendungsmöglichkeiten. Sie können nicht als Garantie ausgelegt werden, weder für die spezifischen Eigenschaften der beschriebenen Produkte, noch für die Eignung für die als Beispiel genannten Anwendungsmöglichkeiten.

Klassifiziert gemäß EU-Richtlinie 1999/45/EC Weitere Informationen entnehmen Sie bitte unseren Datenblättern zur Materialsicherheit ("Material Safety Data Sheets").

ALLGEMEINES

Uddeholm Mirrax 40 ist ein umgeschmolzener korrosionsfreier Werkzeugstahl, der auf 40 HRC vorvergütet ist. Uddeholm Mirrax 40 wird durch das Elektro-Schlacke-Umschmelzverfahren (ESU) produziert – ein zusätzlicher Schritt bei der Stahlherstellung, der einen sehr reinen Stahl mit niedrigem Schwefeleinschluss (max. 0,003 %) und niedrigem Einschluss nichtmetallischer Elemente hervorbringt. Dadurch kann mit Uddeholm Mirrax 40 eine sehr hohe Oberflächengüte durch Polieren erzielt werden. Uddeholm Mirrax 40 wird durch folgende Merkmale charakterisiert:

- exzellente Zerspanbarkeit
- exzellente Polierbarkeit
- exzellente Duktilität und Zähigkeit
- gleichmäßige Härte, selbst bei großen Abmessungen
- guter Widerstand gegen Eindrücke
- gute Korrosionsbeständigkeit

Durch die Kombination dieser Eigenschaften entsteht ein Stahl mit einer ausgezeichneten Gesamtleistung bei der Produktion. Der praktische Nutzen der guten Korrosionsbeständigkeit kann wie folgt zusammengefasst werden.

• Weniger Kosten bei der Wartung der Form Die Original-Oberfläche bleibt lange erhalten. Das führt zu einem längeren Einsatz der Form mit weniger Wartungsintervallen. Formen, die in feuchter Umgebung gelagert werden oder feuchten Arbeitsbedingungen ausgesetzt sind, benötigen keinen besonderen Schutz.

• Geringere Produktionskosten

Da die Kühlkanäle weniger von Korrosion betroffen sind als bei herkömmlichem Formenstahl, sind die Wärmeleiteigenschaften und dadurch die Effektivität der Kühlung während der gesamten Lebensdauer der Form gleichbleibend, was wiederum gleichmäßige Zykluszeiten garantiert. Uddeholm Mirrax 40 wird im vorvergüteten Zustand ausgeliefert. Die dadurch entstehenden Vorteile lassen sich wie folgt zusammenfassen.

- Kein Risiko bei der Härtung
- Keine Kosten für die Härtung

- Zeitersparnis, d. h. kein Warten auf die Wärmebehandlung
- Niedrigere Werkzeugkosten (d. h. kein Verzug, der begradigt werden muss)
- Änderungen können leicht durchgeführt werden

Zusätzlich führt die Kombination aus hoher Härte und guter Zähigkeit zu einer Form mit einem guten Widerstand gegen Eindrücke und minimiert das Risiko eines unerwarteten Ausfalls. Das Ergebnis ist eine sichere Form mit einer langen Standzeit.

Richtanalyse %	C 0,21	Si 0,9	Mn 0,45	Cr 13,5	Mo 0,2	Ni 0,6	V 0,25	N +
Standard Spezifikation	AISI 420 modified							
Lieferzustand	vorvergütet auf 360–400 HB							
Farbkenn- zeichnung	Orange/grün							

ANWENDUNGSBEREICHE

- Spritzgussformen für korrodierende und nicht-korrodierende Kunststoffe
- Kunststoffformgebung von Produkten mit hohen Anforderungen an die Oberfläche (z. B. Fassungen und Gehäuse für Fernseher oder Computer)
- Blasformen von korrosiven Kunststoffen oder von transparenten Produkten mit hohen Anforderungen an die Oberfläche (z. B. PET-Flaschen)
- Matrizen für die Extrusion
- Konstruktionsteile

EIGENSCHAFTEN

PHYSIKALISCHE DATEN

Temperatur	20 °C	200 °C	400 °C
Dichte kg/m³	7.700	-	
Elastizitätsmodul MPa	215.000	210.000	195.000
Wärmeausdehnungs- koeffizient von 20°C bis 1/°C	-	12,4 x 10 ⁻⁶	11,4 x 10 ⁻⁶
Wärmeleitfähigkeit W/m °C	-	20	21
Spezifische Wärme J/kg°C	460	-	

^{*} Die Wärmeleitfähigkeit ist schwierig zu bestimmen. Die Abweichung kann bis zu ±15 % betragen.

MECHANISCHE EIGENSCHAFTEN

ZUGFESTIGKEIT

Alle Proben wurden von einem Stab mit der Abmessung 508 x 306 mm genommen, Härte 360 HB.

Prüftemperatur	20 °C	200 °C
Streckgrenze, Rp0,2 MPa	1020	930
Zugfestigkeit, Rm MPa	1150	1060
Dehnung, %	35	38
Einschnürung, %	13	11

DRUCKFESTIGKEIT

estigkeit, Rc0,2 MPa	1100
----------------------	------

KORROSIONS-BESTÄNDIGKEIT

Formen aus Uddeholm Mirrax 40 haben eine gute Beständigkeit gegen Rostbildung durch feuchte Arbeits- und Lagerbedingungen und beim Formen von korrosiven Kunststoffen unter normalen Produktionsbedingungen.

WÄRMEBEHANDLUNG

Uddeholm Mirrax 40 ist für den Gebrauch im Lieferzustand vorgesehen, d. h. gehärtet und angelassen auf 360–400 HB. Sollte der Stahl eine höhere Härte benötigen und deshalb wärmebehandelt werden, folgen Sie bitte den unten stehenden Anweisungen.

WEICHGLÜHEN

Schützen Sie den Stahl vor Entkohlung und Oxidation und wärmen Sie ihn auf 780 °C durch. Um 10 °C die Stunde kühlen bis auf 600 °C, dann frei an der Luft abkühlen.

SPANNUNGSARMGLÜHEN

Nach der Grobzerspanung sollte das Werkzeug auf max. 550 °C durchgewärmt und dann 2 Stunden auf dieser Temperatur gehalten werden. Dann frei an der Luft abkühlen.

HÄRTEN

Anmerkung: Es wird empfohlen, vor dem

Härten weichzuglühen.

Vorwärmtemperatur: 500-600 °C

Austenitisierungstemperatur: 1000-1025 °C,

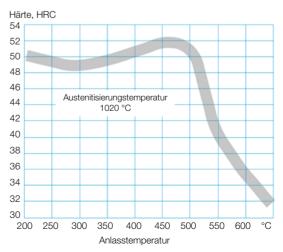
normalerweise 1020 °C

Der Stahl sollte auf Austenitisierungstemperatur durchgewärmt werden und auf dieser Temperatur für 30 Minuten gehalten werden.

Während des Austenitisierens muss das Werkzeug vor Entkohlung und Oxidation geschützt werden

ABSCHRECKMITTEL

- Vakuum mit ausreichendem Überdruck
- Gebläseluft


Um optimale Eigenschaften zu erzielen, sollte das Abschrecken so schnell wie möglich erfolgen, solange der Verzug dabei akzeptabel bleibt. Das Werkzeug sollte sofort angelassen werden, sobald eine Kerntemperatur von 50–70 °C erreicht ist.

ANLASSEN

Die Anlasstemperatur können Sie entsprechend der gewünschten Härte dem nachfolgenden Anlassdiagramm entnehmen.

Es sollte mindestens zweimal angelassen werden mit einer Zwischenkühlung auf Raumtemperatur. Die niedrigste Anlasstemperatur beträgt 250 °C, die Mindesthaltedauer mindestens 2 Stunden.

ANLASSDIAGRAMM Die Anlasskurve ist ein Richtwert.

Obige Anlasskurven erhält man nach Wärmebehandlung von Proben mit einer Größe von 15 x 15 x 40 mm, Abkühlung unter Umluft. Nach der Wärmebehandlung von Werkzeugen und Matrizen ist aufgrund von Faktoren wie der tatsächlichen Werkzeuggröße und den Wärmebehandlungsparametern eine geringere Härte zu erwarten.

EMPFOHLENE SCHNITT-DATEN

Die nachfolgenden Schnittdaten sind als Richtwerte zu verstehen und müssen den jeweiligen örtlichen Voraussetzungen angepasst werden. Die empfohlenen Schnittdaten in den nachfolgenden Tabellen gelten für Uddeholm Mirrax 40, Härte ungefähr 380 HB.

DREHEN

Schnitt- parameter	Drehen mit Hartmetall Schruppen Schlichten		Drehen mit Schnell- arbeitsstahl Schlichten
Schnittge- schwindig- keit (v _c) m/Min.	80-130	130-180	10-15
Vorschub (f) mm/U	0,2-0,4	0,05-0,2	0,05-0,3
Schnitttiefe (a _p), mm	2-4	0,5-2	0,5-3
Bearbeitungs- gruppe ISO	P20-P30 beschichtetes Hartmetall	P10 beschich- tetes Hartmetall oder Cermet	-

BOHREN

SPIRALBOHRER AUS SCHNELLARBEITSSTAHL

Bohrerdurch-	Schnittgeschwindig-	Vorschub, (f)
messer, Ø mm	keit (v _c), m/Min.	mm/U
- 5	10-12*	0,05-0,15
5-10	10-12*	0,15-0,20
10-15	10-12*	0,20-0,25
15-20	10-12*	0,25-0,30

^{*}Für beschichtete Schnellarbeitsstähle v_c = 16–18 m/Min.

HARTMETALLBOHREN

	Bohrertyp		
Schnitt- parameter	Wende- schneid platten	Vollhart- metall	Kühlkanal- bohrer mit Hartmetall- schneide ¹⁾
Schnittgeschwindigkeit (v _c) m/Min.	100-120	80-100	70-80
Vorschub (f) mm/U	0,05-0,25 ²⁾	0,10-0,25 ³⁾	0,15-0,25 ⁴⁾

¹⁾ Bohrer mit einer auswechselbaren oder einer angelöteten Hartmetallschneide

FRÄSEN

PLAN- UND ECKFRÄSEN

	Fräsen mit Hartmetall	
Schnittparameter	Schruppen	Schlichten
Schnittgeschwindigkeit (v _c) m/Min.	80-120	120-150
Vorschub (f ₂) mm/Zahn	0,2-0,4	0,1-0,2
Schnitttiefe (a _p) mm	2-5	-2
Bearbeitungsgruppe ISO	P20-P40 beschichtetes Hartmetall	P10 beschichtetes Hartmetall oder Cermet

SCHAFTFRÄSEN

	FRÄSERTYP		
Schnitt- parameter	Vollhart- metall	Fräser mit Wende- schneid plattenbohrer	Schnellar- beitsstahl
Schnittge- schwindigkeit (v _c) m/Min.	60-100	80-120	20-25 ¹⁾
Vorschub (f ₂) mm/Zahn	0,03-0,20 ²⁾	0,08-0,20 ²⁾	0,05-0,35 ²⁾
Bearbeit- ungsgruppe ISO	-	P15-P30	1

 $^{^{1)}}$ Für beschichtete Schnellarbeitsstähle vc = 25–30 m/Min.

SCHLEIFEN

Allgemeine Schleifscheibenempfehlungen sind in der folgenden Tabelle zu finden. Weitere Informationen können der Uddeholm-Druckschrift "Schleifen von Werkzeugstahl" entnommen werden.

Schleifverfahren	Schleifscheiben- empfehlung
Umfangschleifen	A 46 HV
Stirnschleifen (Segment)	A 36 GV
Außenrundschleifen	A 60 KV
Innenrundschleifen	A 60 JV
Profilschleifen	A 120 JV

löteten Hartmetallschneide

2) Vorschub für Bohrerdurchmesser 20–40 mm

³⁾ Vorschub für Bohrerdurchmesser 5–20 mm

⁴⁾ Vorschub für Bohrerdurchmesser 10-20 mm

²⁾ Abhängig von radialer Schnittiefe und von Fräserdurchmesser

FUNKENEROSIVE BEARBEITUNG

Falls ein Funkenerodieren im Lieferzustand durchgeführt wird, sollte das Werkzeug einmal zusätzlich auf etwa 550 °C angelassen werden. Wenn der Stahl im Werkzeug erneut wärmebehandelt wird, sollte das Werkzeug nach dem Funkenerodieren auf 25 °C unter der früheren Anlasstemperatur angelassen werden. Es wird empfohlen, die Randschicht durch Polieren oder Läppen zu entfernen.

Weitere Informationen finden Sie in der Broschüre "Funkenerodieren von Werkzeugstählen".

SCHWEISSEN

Beim Schweißen von Werkzeugstahl lassen sich gute Ergebnisse erzielen, wenn sorgfältig gearbeitet wird und entsprechende Vorkehrungen wie Vorwärmen, Wärmebehandeln nach dem Schweißen, Vorbereiten der Schweißnaht, Auswahl des geeigneten Schweißzusatzwerkstoffs sowie des geeigneten Schweißverfahrens usw. getroffen werden. Für beste Ergebnisse nach dem Polieren und Fotoätzen sollen Zusätze mit einer zum Werkzeugstahl passenden chemischen Zusammensetzung gewählt werden

Schweißmethode	TIG		
Arbeitstemperatur	200-250 °C		
Schweißzusatzwerkstoff	MIRRAX TIG-WELD		
Härte nach dem Schweißen	54-56 HRC		
Wärmebehandlung nach dem Schweißen	Anlassen 560°C, 2 Stunden. Schweißhärte nach dem Anlassen 38-42 HRC.		

Kleine Reparaturen können bei Raumtemperatur vorgenommen werden.

LASERSCHWEISSEN

Zum Laserschweißen sind Uddeholm Stavax Laser-Schweißzusätze erhältlich. Weitere Informationen finden Sie in den Uddeholm-Druckschriften "Uddeholm Laser-Schweißzusätze" oder "Schweißen von Werkzeugstahl".

FOTOÄTZUNG

Uddeholm Mirrax 40 verfügt über ein homogenes Gefüge mit sehr wenig Einschlüssen. Aufgrund dieses hohen Reinheitsgrades ist dieser Stahl für das Fotoätzen gut geeignet. Alle führenden Firmen, die Fotoätzarbeiten ausführen, kennen das spezielle Verfahren, das aufgrund der hohen Korrosionsbeständigkeit von Uddeholm Mirrax ESR angewandt werden muss.

Weitere Informationen können Sie der Uddeholm-Broschüre "Fotoätzung von Werkzeugstahl" entnehmen

POLIEREN

Uddeholm Mirrax 40 besitzt in gehärtetem und angelassenem Zustand eine sehr gute Polierbarkeit.

Im Vergleich zu anderen Formenstählen von Uddeholm sollte eine etwas andere Poliertechnik angewandt werden. Das Grundprinzip besteht darin, beim Feinschleifen/Polieren in kleineren Schritten vorzugehen und mit dem Polieren nicht an einer zu rauen Oberfläche zu beginnen. Außerdem ist es wichtig, den Poliervorgang sofort zu beenden, wenn der letzte Kratzer der zuvor verwendeten Körnung entfernt worden ist.

Ausführlichere Informationen über Poliertechniken finden Sie in der Uddeholm Druckschrift "Polieren von Werkzeugstahl".

WEITERE INFORMATIONEN

Für weitere Informationen über Auswahl, Wärmebehandlung, Anwendungsbereiche und Verfügbarkeit der Uddeholm Werkzeugstähle wenden Sie sich bitte an die Uddeholm Verkaufsniederlassung in Ihrer Nähe. Wir helfen Ihnen gerne.

Sie finden uns natürlich auch im Internet unter www.uddeholm.de.

Manufacturing solutions for Generatios to come

SHAPING THE WORLD®

Wir gestalten die Welt gemeinsam mit der globalen Fertigungsindustrie.

Uddeholm stellt Stahl her, der Produkte formt, die wir in unserem täglichen
Leben verwenden. Wir tun dies nachhaltig, fair gegenüber den Menschen und
der Umwelt. So können wir die Welt weiter gestalten

- Heute und für kommende Generationen.

