Uddeholm RoyAlloyTM

Uddeholm RoyAlloy™

Uddeholm RoyAlloy è appositamente prodotto dalla Edro Specialty Steels, Inc., una Divisione del Gruppo voestalpine. RoyAlloy è brevettato da Edro Patents #6,045,633 e #6,358,344.

Queste informazioni si basano sulle nostre attuali conoscenze e vengono divulgate allo scopo di fornire delle informazioni generali sui nostri prodotti e il loro impiego. Esse quindi non devono essere interpretate come una garanzia sulle proprietà specifiche dei prodotti descritti o come una garanzia della loro idoneità per un determinato scopo.

Omologato ai sensi della Direttiva Europea 1999/45/CE Per ulteriori informazioni, consultare la "Schede di sicurezza"

Edizione 2, 11.2024

GENERALITÀ

Uddeholm RoyAlloy è un acciaio inossidabile per portastampi brevettato ad alta lavorabilità fornito allo stato prebonificato.

Uddeholm RoyAlloy è caratterizzato da:

- · Eccellente lavorabilità
- · Buona stabilità dimensionale
- · Eccellente saldabilità
- · Buona resistenza alla corrosione
- · Elevata duttilità
- · Durezza uniforme in tutte le dimensioni
- · Buona finitura delle superfici laminate
- · Ottima resistenza a compressione

Nota: Uddeholm RoyAlloy è sottoposto a controlli a ultrasuoni.

Analisi %	C 0.05	Si 0.4	Mn 1.2	Cr 12.6	S 0.12	Cu +	N +
Specifica standard	Nessuna (Brevettato)						
Stato di fornitura	Temprato e rinvenuto a 290–330 HB						
Codice cromatico	Giallo/blu con linea nera trasversale						

APPLICAZIONI

- Portastampi (supporti/piani d'appoggio, piastre portastampo, piastre di rinforzo/supporto, piastre di espulsione)
- Stampi per plastica e gomma con requisiti di finitura superficiale non speculare
- · Stampi per estrusione plastica
- · Parti costruttive

PROPRIETÀ

Dati fisici

Prebonificato a 320 HB.

Temperatura	20°C	100°C	200°C
Densità, kg/m³	7 800	-	7 750
Modulo di elasticità MPa	200 000	-	190 000
Coefficiente di dilatazione termica per °C da 20°C	-	-	11,0 x 10 ⁻⁶
Conducibilità termica W/m °C	-	27,5	28
Calore specifico J/kg °C	-	500	540

Proprietà meccaniche

Resilienza

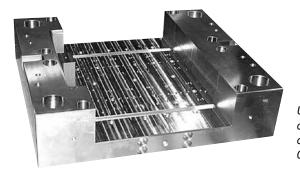
L'assorbimento di energia durante le prove di resilienza varia in base al materiale di test (dimensioni della barra e durezza in condizioni di fornitura), alla temperatura e al tipo di provino (tipo, posizione e orientamento nella barra).

Tenacità Charpy-V a temperatura ambiente in direzione trasversale-lungo (LT).

Piatto di spessore 76 mm.

Durezza	320 HB
Energia assorbita, J	22

Resistenza alla compressione


Valori approssimativi.

Durezza	320 HB
Resistenza alla compressione, R _c 0,2 MPa	760

Resistenza alla trazione

Valori approssimativi. Provino longitudinale testato a temperatura ambiente.

Durezza	320 HB
Limite di snervamento, Rp0,2 MPa	890
Resistenza alla trazione, R _m MPa	1 070
Allungamento, A5 %	12
Strizione, Z %	34

Resistenza alla corrosione

Uddeholm RoyAlloy è stato sviluppato con una composizione chimica tale da garantire una resistenza alla corrosione sufficientemente alta durante il funzionamento e l'immagazzinamento dello stampo. Gli utensili realizzati con Uddeholm RoyAlloy hanno un'eccellente resistenza alla corrosione, che deriva da presenza di umidità durante la lavorazione e l'immagazzinamento e dallo stampaggio di materiale plastico corrosivo in condizioni normali di produzione.

TRATTAMENTO TERMICO

Uddeholm RoyAlloy è fornito allo stato prebonificato con durezza a cuore di 290–330 HB. Ogni piastra è sottoposta a rigide prove di durezza per garantirne l'uniformità.

Uddeholm RoyAlloy deve essere utilizzato in condizione prebonificato (come fornito); in genere non è richiesto nessun ulteriore trattamento termico.

Uddeholm RoyAlloy è la scelta di acciaio preferita di molti produttori di stampi ed utilizzatori finali. Uddeholm RoyAlloy offre una maggiore lavorabilità, una migliore stabilità dimensionale e finitura superficiale superiore rispetto ai classici acciai tipo AISI 420F / W.-Nr. 1.2085.

Uddeholm RoyAlloy ha una buona stabilità dimensionale anche dopo la lavorazione completa di una piastra 152 x 711 x 813 mm . Distorsione 0,15 mm, da angolo a angolo.

SUGGERIMENTI RELATIVI ALLA LAVORAZIONE ALLE MACCHINE UTENSILI

Suggerimenti relativi alla lavorazione alle macchine utensili. I dati che seguono devono essere considerati indicativi e da adattare alla situazione contingente.

Per maggiori informazioni si rimanda alla pubblicazione Uddeholm "Cutting data recommendations"

Stato di fornitura: prebonificato a circa 320 HB

Tornitura

Parametri	Tornitura co in metallo	Tornitura con HSS	
di taglio	Sgrossatura	Finitura	Finitura
Velocità di taglio (v _c) m/min.	130–190	190–250	25–28
Velocità di avanzamento (f) mm/giro	0,2-0,4	0,05–0,2	0,05-0,3
Profondità di taglio (a _p) mm	2–4	0,5–2	0,5-3
Designazione del carburo ISO	P20-P30 Carburo rivestito	P10-P20 Carburo rivestito o cermet	-

Fresatura Squadratura e spianatura

Darametri di taglia	Fresatura in metallo duro		
Parametri di taglio	Sgrossatura	Fresatura fine	
Velocità di taglio (v _c) m/min.	130–190	190–250	
Velocità di avanzamento (f _z) mm/dente	0,2-0,4	0,1–0,2	
Profondità di taglio (a _p) mm	2–5	≤2	
Designazione del carburo ISO	P20-P40 Carburo rivestito	P10-P20 Carburo rivestito o cermet	

Fresatura con fresa a candela

Davana atvi	Tipo di fresa			
Parametri di taglio	Metallo duro integrale	Inserto in metallo duro	Acciai rapido	
Velocità di taglio (v _c) m/min	80-120	120-170	35-40 ¹⁾	
Velocità di avanzamento (f _z) mm/dente	0,006-0,202)	0,06-0,202)	0,01–0,35²)	
Designazione del carburo ISO	-	P15-P40	-	

¹⁾ Per frese in HSS rivestito $v_c = 60-66$ m/min.

Foratura

Punte in acciaio rapido (HSS)

Diametro della punta, Ø mm	Velocità di taglio (v _c) m/min	Velocità di avanzamento mm/giro
-5	17-19*	0,05-0,10
5-10	17-19*	0,10–0,20
10-15	17-19*	0,20–0,25
15-20	17-19*	0,25–0,30

^{*} Per punte HSS rivestite v = 29-31 m/min.

Punte in metallo duro

Davana stvi	Tipo di punta			
Parametri di taglio	Inserto in metallo duro	Metallo duro integrale	A tagliente riportato ¹⁾	
Velocità di taglio (v _c) m/min	215-240	110-130	70-110	
Velocità di avanzamento (f) mm/giro	0,05–0,15²)	0,10-0,253)	0,15-0,254)	

¹⁾ Punta con inserti in metallo duro riportati o saldo-brasati

Rettifica

Di seguito sono fornite delle raccomandazioni generali sulle mole da impiegare. Per maggiori informazioni leggere la pubblicazione Uddeholm «Rettifica degli acciai per utensili».

Tipo di rettifica	Prebonificato
Rettifica tangenziale (con mola ad asse orizzontale)	A 46 HV
Rettifica frontale (con mola a segmenti)	A 36 GV
Rettifica cilindrica	A 60 KV
Rettifica interna	A 60 JV
Rettifica di profilatura	A 120 JV

²⁾ A seconda della profondità radiale di taglio e del diametro della fresa

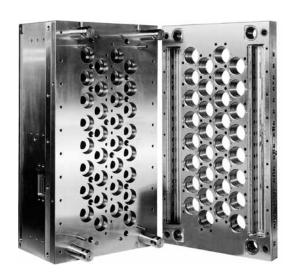
²⁾ Avanzamento per punte di diametro 20-40 mm

³⁾ Avanzamento per punte di diametro 5–20 mm

⁴⁾ Avanzamento per punte di diametro 10-20 mm

SALDATURA

Uddeholm RoyAlloy è facilmente saldabile con materiale di apporto RoyAlloy o vari metalli di apporto inossidabili standard, con procedimenti TIG (GTAW) e MMA (SMAW). Per ottenere risultati migliori, utilizzate gli elettrodi di saldatura Uddeholm RoyAlloy. In termini di composizione chimica e proprietà meccaniche, gli elettrodi RoyAlloy forniscono una compatibilità ottimale con il metallo di base.


La durezza dell'area saldata sarà di 34–38 HRC. I materiali di apporto, come gli elettrodi TIG, sono disponibili nelle sezioni Ø 0,9 mm e Ø 1,8 mm.

Non sono richiesti interventi di pre- o postriscaldamento. I test hanno dimostrato che Uddeholm RoyAlloy non sviluppa una zona termicamente alterata (HAZ) intorno al deposito di saldatura. Questo elimina il problema delle cricche da saldatura durante la riparazione o, successivamente, durante il suo utilizzo in produzione.

È consigliato effettuare una distensione post saldatura per riparazioni di entità importanti al fine di ridurre le tensioni residue. Temperatura massima di distensione 485°C.

APPROFONDIMENTI E DETTAGLI

Per altre informazioni sulla scelta, sul trattamento termico, sull'impiego e sulla disponibilità dei nostri acciai potete compilare il form contatti presente nel sito: https://www.uddeholm.com/italy/it/. Le informazioni fornite rappresentano una sintesi del know-how dell'acciaieria Uddeholm. Per ulteriori approfondimenti, non esitate a contattarci.

Manufacturing solutions for generations to come

SHAPING THE WORLD®

We are shaping the world together whit the global manufacturing industy. Uddeholm manufactures steel that shapes products used in our evey day life. We do it sustainably, fair to people and the environment. Enabling us to continue shaping the world — today and for generations to come.

