# Uddeholm Nimax®



#### **Uddeholm Nimax®**

Reliable and efficient tool steel is essential for good results. The same goes for achieving high productivity and high availability. When choosing the right steel many parameters must be considered, however by using a superior steel your productivity can be greatly improved. With excellent machinability and very good polishability you will spend less time to finish your product. This makes it much easier to meet your deadline. Uddeholm Nimax is a new steel grade for plastic moulding which provides several unique benefits.

#### SUPERIOR MACHINABILITY

This will give you the advantage of shorter machining time. In turn this means that it will be easier for you to meet your customers demands on delivery time. You will also benefit from lower cutting tool cost and increased availability of your machines.

#### **INSTANT WELDING**

• NO PREHEATING OR POST HEAT TREATMENT REQUIRED

Weld repairs, maintenance and design changes can be performed quicker, thus shortening the downtime during mould manufacturing and production. You will be very flexible and your production will run smoother and faster.

#### **CONSISTENT TOOL PERFORMANCE**

• LONGER TOOL LIFE

Uddeholm Nimax combines high hardness with a high toughness. This leads to a mould with good resistance to indentations and a minimum risk for unexpected failures, thereby leading to a more reliable tool and prolonged tool life.

#### **REDUCE YOUR POLISHING COSTS**

• ACHIEVE A BETTER SURFACE FINISH

With good structure and a low amount of inclusions you will spend considerably less time to achieve the desired surface finish.

© UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder.

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".



### GENERAL

Uddeholm Nimax is a low carbon plastic mould steel delivered at a hardness of  ${\sim}40$  HRC.

Uddeholm Nimax is characterized by the following:

- Excellent machinability
- Very good welding properties
- Good polishing and texturing properties
- Good resistance against indentations
- High impact and fracture toughness
- Consistent properties through large sections

The excellent machinability and easy weld-ability, no preheating or post treatment necessary, reduce the manufacturing time and make the maintenance much easier. The high hardness in combination with a high toughness results in a mould with good resistance to indentations and a minimum risk for unexpected failures, leading to a safer mould and a prolonged tool life.

| Typical analysis<br>weight- % | C<br>0.1             | Si<br>0.3 | Mn<br>2.5 | Cr<br>3.0 | Mo<br>0.3 | Ni<br>1.0 |
|-------------------------------|----------------------|-----------|-----------|-----------|-----------|-----------|
| Delivery condition            | 360–400 HB           |           |           |           |           |           |
| Colour code                   | Light blue/Dark blue |           |           |           |           |           |

## **APPLICATIONS**

Uddeholm Nimax is suitable for many different types of applications within the plastic segment. Its excellent machinability and high toughness also makes it suitable as a holder material as well as for many engineering applications.

Examples of applications are:

- Moulds for plastic injection
- Packaging industry
- · Containers of different types
- Automotive industry
- Larger interior parts
- Head and Tail lights
- Appliances
- Panels and handles
- Holder material for forging and die casting dies
- Holder material for cutting tools
- Hot runner manifolds
- Structural components

## PROPERTIES

#### PHYSICAL DATA

| Temperature                                                             | 20°C<br>(68°F)                    | 200°C<br>(390°F)                                  |
|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| Density<br>kg/m <sup>3</sup><br>lbs/in <sup>3</sup>                     | 7 900<br>0.285                    | -                                                 |
| Modulus of elasticity<br>N/mm <sup>2</sup><br>psi                       | 205 000<br>29.7 x 10 <sup>6</sup> | -                                                 |
| Coefficient of thermal<br>expansion per<br>°C from 20°C<br>°F from 68°F | _                                 | 12.4 x 10 <sup>-6</sup><br>6.9 x 10 <sup>-6</sup> |
| Thermal conductivity<br>W/m • °C<br>Btu in/(ft² h °F)                   | _                                 | 28<br>194                                         |
| Specific heat<br>J/kg °C<br>Btu/lb °F                                   | 460<br>0.11                       | -                                                 |

#### **MECHANICAL PROPERTIES**

The properties are representative of samples taken from the centre of bars with dimension 596 x 296 mm unless otherwise is indicated. Values of different mechanical properties depend on dimension of original material, position and direction of samples as well as hardness and test temperature.

#### IMPACT TOUGHNESS

Specimens type: Charpy V, short transverse direction.





The high impact toughness increases the safety against cracking failures.

#### TENSILE STRENGTH

Hardness ~370 HB.

| Yield strength, R <sub>p0.2</sub> MPa | 785  |
|---------------------------------------|------|
| Tensile strength, R <sub>m</sub> MPa  | 1265 |
| Elongation, %                         | 11   |
| Area contraction, %                   | 47   |

COMPRESSIVE STRENGTH

| Hardness ~ | 370 HB. |
|------------|---------|
|------------|---------|

| Compressive strength, R <sub>c0.2</sub> MPa | 1000 |
|---------------------------------------------|------|
|                                             |      |

## HEAT TREATMENT

Uddeholm Nimax is intended to be used in the delivery condition. The hardness cannot be increased by heat treatment, but can be decreased by tempering. **However, tempering is not recommended because it significantly decreases toughness in spite of the fact that the hardness is reduced.** 

The following hardness reduction can be expected after 2 h at full temperature:



If the steel has been exposed to high temperature thus reducing toughness and hardness, the following procedure can be performed in order to restore the original condition:

Heat to  $850^{\circ}$ C (1560°F), holding time 30 min. Cool in circulating air.



Refrigerator handle.

## SURFACE TREATMENT

#### FLAME AND INDUCTION HARDENING

The surface hardness of Uddeholm Nimax cannot be increased either by induction hardening or flame hardening.

#### NITRIDING

Nitriding increases the surface hardness and wear resistance. For best result the following steps should be followed:

1. Rough machining

2. Temper at a temperature between 480– 525°C (896–977°F) thus reducing the amount of stresses and retained austenite content. This will minimize later dimensional changes during the nitriding operation. Heat the mould up until it is heated through and let it cool down to room temperature

3. Finish machining/grinding

4. Nitriding

The following approximate nitriding depths and surface hardnesses can be expected:

| Surface          | hardness<br>MHV<br>(200g) | Depth after nitriding<br>10h 30h 60h<br>mm mm mm<br>(inch) (inch) (inch) |                        |                        |
|------------------|---------------------------|--------------------------------------------------------------------------|------------------------|------------------------|
| Gas nitriding    | 950                       | 0.16 <sup>1)</sup>                                                       | 0.28 <sup>1)</sup>     | 0.39 <sup>1)</sup>     |
| at 510°C (950°F) |                           | (0.006 <sup>1)</sup> )                                                   | (0.011 <sup>1)</sup> ) | (0.015 <sup>1)</sup> ) |
| Plasma nitriding | 1000                      | 0.13 <sup>2)</sup>                                                       | 0.25 <sup>1)</sup>     | 0.33 <sup>1)</sup>     |
| at 480°C (896°F) |                           | (0.005 <sup>2)</sup> )                                                   | (0.010 <sup>1)</sup> ) | (0.013 <sup>1)</sup> ) |

1) Not recommended

2) Recommended

Nitriding at temperatures above 500°C (930°F) and times longer than 10 h is not recommended as it will reduce toughness and hardness significantly.

For more detailed information about nitriding contact your local Uddeholm office.

## MACHINING RECOMMENDATIONS

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions. More information can be found in the Uddeholm publication "Cutting data recommendations".

#### TURNING

| Cutting data parameters                             | Turning wi<br>Rough<br>turning        | th carbide<br>Fine<br>turning  | Turning<br>with HSS<br>Fine turning |
|-----------------------------------------------------|---------------------------------------|--------------------------------|-------------------------------------|
| Cutting speed (v <sub>c</sub> )<br>m/min.<br>f.p.m. | 110–150<br>360–492                    | 150–200<br>492–656             | 10–15<br>33–49                      |
| Feed (f)<br>mm/rev.<br>i.p.r.                       | 0.2–0.4<br>0.008–0.016                | -0.3<br>-0.012                 | -0.3<br>-0.012                      |
| Depth of cut (a <sub>p</sub> )<br>mm<br>inch        | 2–4<br>0.08–0.16                      | -2<br>-0.08                    | -2<br>-0.08                         |
| Carbide designation<br>ISO<br>US                    | P20–P30<br>C6–C5<br>Coated<br>carbide | P10<br>C7<br>Coated<br>carbide | _                                   |

HSS = High Speed Steel

#### DRILLING

HIGH SPEED STEEL TWIST DRILL

| Drill dia | ameter Cutting speed |        | Cutting speed (v <sub>c</sub> ) |           | ed (f)      |
|-----------|----------------------|--------|---------------------------------|-----------|-------------|
| mm        | inch                 | m/min  | f.p.m.                          | mm/rev    | i.p.r.      |
| -5        | -3/16                | 12–14* | 39–46*                          | 0.05-0.10 | 0.002-0.004 |
| 5–10      | 3/16–3/8             | 12–14* | 39–46*                          | 0.10-0.20 | 0.004-0.008 |
| 10–15     | 3/8 -5/8             | 12–14* | 39–46*                          | 0.20-0.25 | 0.008-0.010 |
| 15–20     | 5/8 –3/4             | 12–14* | 39–46*                          | 0.25–0.30 | 0.010-0.012 |

\* For coated HSS drill  $v_{c} = 18-20$  m/min. (59-66 f.p.m.)

#### CARBIDE DRILL

|                                                        | Type of drill                                        |                                                      |                                                      |
|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Cutting data parameters                                | Indexable<br>insert                                  | Solid<br>carbide                                     | Carbide<br>tipped <sup>1)</sup>                      |
| Cutting<br>speed (v <sub>.</sub> )<br>m/min.<br>f.p.m. | 150–170<br>492–558                                   | 100–130<br>328–426                                   | 90–110<br>296–360                                    |
| Feed (f)<br>mm/rev.<br>i.p.r.                          | 0.05–0.25 <sup>2)</sup><br>0.002–0.010 <sup>2)</sup> | 0.10–0.25 <sup>3)</sup><br>0.004–0.010 <sup>3)</sup> | 0.15–0.25 <sup>4)</sup><br>0.006–0.010 <sup>4)</sup> |

<sup>1)</sup> Drill with replaceable or brazed carbide tip

<sup>2)</sup> Feed rate for drill diameter 20–40 mm (0.8"–1.6")

<sup>3)</sup>Feed rate for drill diameter 5–20 mm (0.2"–0.8")

#### MILLING

#### FACE AND SQUARE SHOULDER MILLING

| Cutting data parameters                             | Milling wit<br>Rough milling   | h carbide<br>Fine milling                          |
|-----------------------------------------------------|--------------------------------|----------------------------------------------------|
| Cutting speed (v <sub>c</sub> )<br>m/min.<br>f.p.m. | 80–150<br>262–492              | 150–180<br>492–590                                 |
| Feed (f <sub>z</sub> )<br>mm/tooth<br>in/tooth      | 0,2–0,4<br>0.008–0.016         | 0,1–0,2<br>0.004–0.008                             |
| Depth of cut (a <sub>p</sub> )<br>mm<br>inch        | 2–5<br>0.08–0.2                | - 2<br>-0.08                                       |
| Carbide designation ISO<br>US                       | P20<br>C6<br>Coated<br>carbide | P10–P20<br>C7–C6<br>Coated<br>carbide<br>or cermet |

#### END MILLING

|                                                | Type of milling                                      |                                                      |                                                      |
|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Cutting data parameters                        | Solid<br>carbide                                     | Carbide index-<br>able insert                        | HSS                                                  |
| Cutting<br>speed (v)<br>m/min.<br>f.p.m.       | 70–110<br>230–361                                    | 80–120<br>262–394                                    | 10–15 <sup>1)</sup><br>33–49 <sup>1)</sup>           |
| Feed (f <sub>z</sub> )<br>mm/tooth<br>in/tooth | 0.03–0.20 <sup>2)</sup><br>0.001–0.008 <sup>2)</sup> | 0.08–0.20 <sup>2)</sup><br>0.003–0.008 <sup>2)</sup> | 0.05–0.35 <sup>2)</sup><br>0.002–0.014 <sup>2)</sup> |
| Carbide<br>designation<br>ISO<br>US            |                                                      | P20–P30<br>C6–C5                                     |                                                      |

<sup>1)</sup>For coated HSS end mill  $v_c = 25-30$  m/min. (82–98 f.p.m.) <sup>2)</sup>Depending on radial depth of cut and cutter diameter

#### GRINDING

A general grinding wheel recommendation is given below. More information can be found in the Uddeholm publication "Grinding of Tool Steel".

#### WHEEL RECOMMENDATION

| Type of grinding                | Wheel recommendation |
|---------------------------------|----------------------|
| Surface grinding straight wheel | A 46 HV              |
| Surface grinding segments       | A 36 GV              |
| Cylindrical grinding            | A 60 KV              |
| Internal grinding               | A 60 IV              |
| Profile grinding                | A 120 JV             |
|                                 |                      |

<sup>&</sup>lt;sup>4)</sup> Feed rate for drill diameter 10–20 mm (0.4"–0.8")

## ELECTRICAL DISCHARGE MACHINING – EDM

Contrary to other steel grades, the heat affected surface layer achieved during EDM'ing will not be harder than the underlying steel. Consequently, the heat affected layer is more easily removed.

## WELDING

Preheating or post heat treatment is not necessary. However if severe strain conditions could be expected a stress relieving at 450°C (840°F) for 2h is recommended after welding.

| Welding method            | TIG                                                          | MMA             |
|---------------------------|--------------------------------------------------------------|-----------------|
| Preheating<br>temperature | None                                                         | None            |
| Filler material           | Impax TIG Weld<br>Nimax TIG-Weld                             | Impax Weld      |
| Max interpass temperature | 300°C (570°F)                                                |                 |
| Cooling rate              | Freely in air                                                |                 |
| Hardness<br>as welded     | Impax TIG-Weld<br>320–340 HB<br>Nimax TIG-Weld<br>360–400 HB | 330–350 HB<br>– |
| Post heat<br>treatment    | None / 450°C (840°F) 2h                                      |                 |

#### LASER WELDING

For laser welding Uddeholm Nimax laser weld rods are available, they are composed to be compatible with Uddeholm Nimax. For further information see Uddeholm information leaflet "Uddeholm Laser Welding Rods".



Chair support.

## PHOTO ETCHING

Uddeholm Nimax is very suitable for texturing by photo etching. The very low sulphur content and homogenous structure ensures an accurate and consistent pattern reproduction.

## POLISHING

Uddeholm Nimax has a very good polishability. The low amount of inclusions and the homogenous structure ensures a good polishing result.

## FURTHER INFORMATION

Please contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steel.

## Manufacturing solutions for generations to come

## SHAPING THE WORLD®

We are shaping the world together with the global manufacturing industry. Uddeholm manufactures steel that shapes products used in our every day life. We do it sustainably, fair to people and the environment. Enabling us to continue shaping the world – today and for generations to come.

