Cutting data recommendations

Uddeholm Vanadis[®] 23

Cutting data formulae

Turning

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Material removal rate,
$$Q = v_c \cdot a_p \cdot f \quad (cm^3 / min)$$

Surface roughness,
$$R_a \approx \frac{f^2 \cdot 50}{r_{\varepsilon}}$$
 (μm)

Legend

v_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

f = Feed per rev (mm/rev)

 $a_p = Axial depth of cut (mm)$

D = Workpiece diameter (mm)

Q = Material removal rate (cm³/min)

 $R_a = Surface roughness (\mu m)$

e = Nose radius (mm)

Milling

$$v_c = \frac{\pi \cdot D \cdot n}{1000} (m/\text{min})$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} \text{ (rev/min)}$$

 $vf = fz \cdot z \cdot n = f \cdot n(\text{mm/min})$

$$h_m = f_z \cdot \sqrt{\frac{a_e}{D}} (\text{mm}) \frac{a_e}{D} < 0.3$$

$$Q = \frac{a_p \cdot a_e \cdot v_f}{1000} (\text{cm}^3/\text{min})$$

Legend

v_c = Cutting speed (m/min)

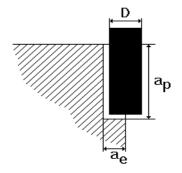
n = Spindle speed (rev/min)

v_f = Feed speed (mm/min)

a_p = Axial depth of cut (mm)

a_e = Radial depth of cut (mm)

= Feed per rev (mm/rev)


z = Number of teeth

f_z = Feed per tooth (mm/tooth)

D = Cutter diameter (mm)

h_m = Average chip thickness (mm)

Q = Material removal rate (cm³/min)

Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Feed speed,
$$v_f = f \cdot n \pmod{min}$$

Feed per rev,
$$f = \frac{v_f}{n}$$
 (mm/rev)

Legend

/c = Cutting speed (m/min)

n = Spindle speed (rev/min)

v_f = Feed speed (mm/min)

D = Drill diameter (mm)

f = Feed per rev (mm/rev)

Turning					
	Cemente	HSS			
	Roughing	Finishing			
Cutting speed, v _c (m/min)	110-160	160-210	12-15		
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3		
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3		
Suitable grades	K20, P20 coated carbide	K15, P15 coated carbide			

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling Cemented carbide					
	Roughing	Finishing			
Cutting speed, v _c (m/min)	110-130	130-160			
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2			
Depth of cut, a _p (mm)	2-5	-2			
	P20-P40 coated carbide	P10-P20 coated carbide			
Suitable grades		or cermet			

Remarks:

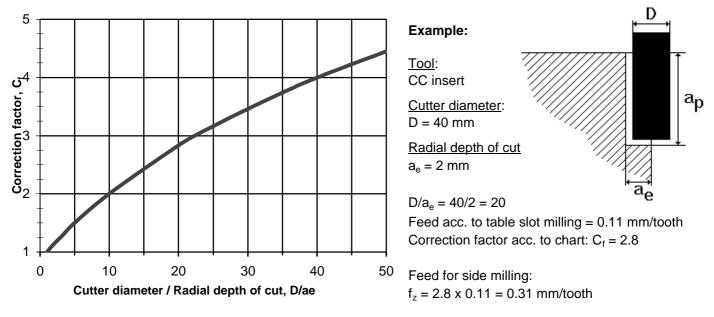
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant. If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide					
	a _e = 0.1 x D	$a_{\rm e} = 0.5 \text{ x D}$	$a_e = 1 \times D$		
Cutting speed, v _c (m/min)	100-150	90-120	80-110		
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15		
Suitable grades	P15-P40 coated carbide				

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Vanadis 23

Slot milling Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)				
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			5-8		
	Feed, f _z (mm/tooth)	0,008-0,02	0,02-0,03	0,03-0,04	0,04-0,05	0,05-0,08
Coated HSS 1-4)	ated HSS ¹⁻⁴⁾ Cutting speed, v _c (m/min)		14-18			
	Feed, f _z (mm/tooth)	0,015-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Solid cemented	olid cemented Cutting speed, v _c (m/min)		40-50			_
carbide ⁵⁻⁸⁾	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v _c (m/min)			90-110		
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades	P15-P40 coated carbide				
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can				
		be used, but the feeds must be adjusted in order to obtain a				
		suitable average chip thickness.				

Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Drilling							
		Drill diameter (mm)					
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			10-12			
	Feed, f (mm/rev)	0,05-0,10	0,10-0,20	0,20-0,30	0,30-0,35	0,35-0,40	
Coated HSS 1-2)	Cutting speed, v _c (m/min)	in) 16-18					
	Feed, f (mm/rev)	0,07-0,18	0,18-0,25	0,25-0,35	0,35-0,40	0,40-0,45	
Indexable insert 3-4)	Cutting speed, v _c (m/min)		120-150			-150	
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0,10-0,15	
Solid cemented	Cutting speed, v _c (m/min)		60-80				
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35	
Brazed cemented	Cutting speed, v _c (m/min)		30-40				
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40	

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- 3. Use insert grades in the range of ISO P20-P30.

 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, v_c = 8-10 m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can with advantage be used.