Cutting data recommendations

Uddeholm Mirrax® ESR

Cutting data formulae

Turning

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Material removal rate, $Q = v_c \cdot a_p \cdot f$ (cm^3 / min)

Surface roughness,
$$R_a \approx \frac{f^2 \cdot 50}{r_{\varepsilon}}$$
 (μm)

Legend

v_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

f = Feed per rev (mm/rev)

 $a_p = Axial depth of cut (mm)$

D = Workpiece diameter (mm)

Q = Material removal rate (cm³/min)

 R_a = Surface roughness (μ m)

e = Nose radius (mm)

Milling

$$v_c = \frac{\pi \cdot D \cdot n}{1000} (m/\text{min})$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} \text{ (rev/min)}$$

$$vf = fz \cdot z \cdot n = f \cdot n(\text{mm/min})$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} \text{ (mm)}$$

$$D_{eff} = 2 \cdot \sqrt{ap (D_i - ap)} + D - D_i \text{ (mm)}$$

$$h_m = f_z \cdot \sqrt{\frac{a_e}{D}} (\text{mm}) \frac{a_e}{D} < 0.3$$

$$Q = \frac{a_p \cdot a_e \cdot v_f}{1000} (\text{cm}^3/\text{min})$$

Legend

 v_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

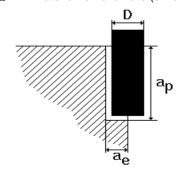
v_f = Feed speed (mm/min)

 $a_n = Axial depth of cut (mm)$

a_e = Radial depth of cut (mm)

f = Feed per rev (mm/rev)

z = Number of teeth


f_z = Feed per tooth (mm/tooth)

D = Cutter diameter (mm)

D_{eff} = Effective cutter diameter (mm)

D_i = Diameter of insert (mm) h_m = Average chip thickness (mm)

Q = Material removal rate (cm³/min)

Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)

Spindle speed,
$$n = \frac{1000 \cdot v_c}{\pi \cdot D}$$
 (rev/min)

Feed speed,
$$v_f = f \cdot n \pmod{\min}$$

Feed per rev,
$$f = \frac{v_f}{n}$$
 (mm/rev)

Legend

 V_c = Cutting speed (m/min)

n = Spindle speed (rev/min)

V_f = Feed speed (mm/min)

D = Drill diameter (mm)

f = Feed per rev (mm/rev)

Turning							
	Cemente	d carbide	HSS				
	Roughing	Finishing					
Cutting speed, v _c (m/min)	160-210	210-260	18-23				
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3				
Depth of cut, a _p (mm)	2-4	0,5-2	0.5-3				
Suitable grades	P20-P30 coated carbide	P10 coated carbide or					
		cermet					

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling Cemented carbide							
	Roughing	Finishing					
Cutting speed, v _c (m/min)	180-240	240-280					
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2					
Depth of cut, a _p (mm)	2-5	-2					
	P20-P40 coated carbide	P10-P20 coated carbide					
Suitable grades		or cermet					

Remarks:

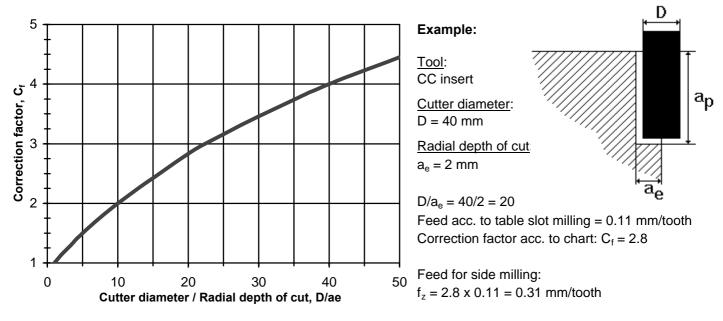
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant. If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide						
	a _e = 0.1 x D	a _e = 0.5 x D	a _e = 1 x D			
Cutting speed, v _c (m/min)	180-240	170-230	160-220			
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15			
Suitable grades	P15-P40 coated carbide					

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Mirrax ESR

Slot milling Axial depth of cut,	a _n = ≤1 x D	Cutter diameter (mm)				
,		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			25-30		
	Feed, f _z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Coated HSS 1-4)	Cutting speed, v _c (m/min)			45-50		
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0.1
Solid cemented	Solid cemented Cutting speed, v _c (m/min)		120-150			
carbide 5-8)	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v _c (m/min)				160-220	
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades			P15-	P40 coated ca	rbide
Side milling		For side milling the same cutting speed as for slot milling can				
Axial depth of cut, a _p = ≤1.5 x D		be used, but the feeds must be adjusted in order to obtain a				
		suitable avera	age chip thickn	ess.		

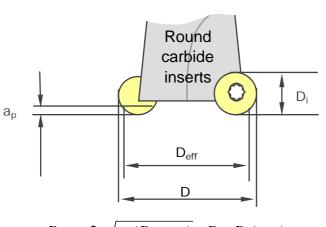
Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f, this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

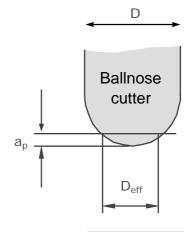
Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Cavity milling with carbide Uddeholm Mirrax ESR


Rough milling with round carbide inserts		Diameter of cutter, D (mm)				
	G-0	<20	21-30	31-40	41-50	>50
Axial depth of cut,	Cutting speed v _c (m/min)			160-180		
$ap = 0.2 \times D_i$	Feed f _z (mm/tooth)	-0,18	0,19-0,21	0,22-0,24	0,25-0,27	0,28-
Axial depth of cut,	Cutting speed v _c (m/min)	160-180				
$ap = 0.15 \times D_i$	Feed f _z (mm/tooth)	-0,2	0,21-0,23	0,24-0,26	0,27-0,29	0,3-
Axial depth of cut,	Cutting speed v _c (m/min)			180-200		
$ap = 0.1 \times D_i$	Feed f _z (mm/tooth)	-0,23	0,24-0,26	0,27-0,29	0,3-0,32	0,33-
Axial depth of cut,	Cutting speed v _c (m/min)			160-180		
$ap = 0.05 \times D_i$	Feed f _z (mm/tooth)	-0,31	0,32-0,34	0,35-0,37	0,38-0,4	0,41-

D_i = diameter of the insert


Rough milling with high feed cutters		<20	Diamet	er of cutter,	D (mm) 41-50	>50
Axial depth of cut,	Cutting speed v _c (m/min)	\20	21-30	160-180	41-50	>50
ap = 100% of max ¹⁾	Feed f _z (mm/tooth)	-0,6	0,6-0,8	0,8-1,0	1,0-1,2	1,2-
Axial depth of cut,	Cutting speed v _c (m/min)			180-200		
ap = 50% of max ¹⁾	Feed f _z (mm/tooth)	-0,8	0,8-1,0	1,0-1,2	1,2-1,4	1,4-

¹⁾ per centage of maximum depth of cut allowed (according to milling tool supplier)

Semi finishing and finishing milling with	ballnose cutters			er of cutter,	. ` ′ ′	
	ψ	<6	6-8	8-10	10-12	>12
Semi finishing Axial depth of cut,	Cutting speed v _c (m/min)			180-220		
ap = 5% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,14	0,14-0,18	0,18-0,22	0,22-0,26	0,26-
Finishing	Cutting speed v _c (m/min)			220-260		
Axial depth of cut, ap = 2% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,12	0,18-0,22	0,22-0,26	0,26-0,28	0,28-

$$D_{eff} = 2 \cdot \sqrt{ap(D_i - ap)} + D - D_i \text{ (mm)}$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$$

Remarks cavity milling:

- 1. Down milling strategy is recommended
- 2. Recommended cutting speeds are at the effective cutter diameter (Deff)
- 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD
- 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (D eff)
- 5. A tough PVD coated carbide grade with sharp edge geometry is recommended

Drilling

Uddeholm Mirrax ESR

Drilling							
		Drill diameter (mm)					
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			12-14			
	Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45	
Coated HSS 1-2)	Cutting speed, v _c (m/min)			20-22			
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50	
Indexable insert ³⁻⁴⁾	Cutting speed, v _c (m/min)				200	-220	
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0.10-0,15	
Solid cemented	Cutting speed, v _c (m/min)			80-	100		
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35	
Carbide tipped 5-7)	Cutting speed, v _c (m/min)				70-80		
	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40	

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid carbide or carbide tipped drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, $v_c = 10-12 \text{ m/min}$

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can be used.