Cutting data recommendations

Uddeholm Tyrax® ESR

Turning Tyrax® ESR

Turning							
	Cemente	HSS					
	Roughing	Finishing					
Cutting speed, v _c (m/min)	140-190	190-240	15-20				
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3				
Depth of cut, a _p (mm)	2-4	0,5-2	0.5-3				
Suitable grades	P20-P30 coated carbide	P10 coated carbide or					
		cermet					

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

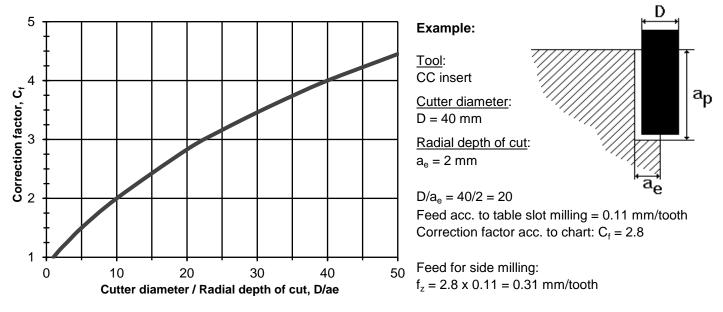
Face milling	Cemente	d carbide
	Roughing	Finishing
Cutting speed, v _c (m/min)	120-170	150-210
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2
Depth of cut, a _p (mm)	2-5	-2
Suitable grades	P20-P40 coated carbide	P10-P20 coated carbide or cermet

Remarks:

- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant. If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide						
	$a_{\rm e} = 0.1 \text{ x D}$	a _e = 0.5 x D	a _e = 1 x D			
Cutting speed, v _c (m/min)	130-160	110-150	110-150			
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15			
Suitable grades		P15-P40 coated carbide				


Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.

Slot milling Axial depth of cut, a _p = ≤1 x D		Cutter diameter (mm)					
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			20-25			
	Feed, f_z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09	
Coated HSS 1-4)	Cutting speed, v _c (m/min)			35-40			
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0.1	
Solid cemented	Cutting speed, v _c (m/min)		120-150				
carbide 5-8)	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04			
Indexable insert 6-8)	Cutting speed, v _c (m/min)				110-150		
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12	
inserts)	Suitable grades			P15-	P40 coated ca	rbide	
Side milling Axial depth of cut, a _p = ≤1.5 x D		For side milling the same cutting speed as for slot milling can					
		be used, but the feeds must be adjusted in order to obtain a					
		suitable average chip thickness.					

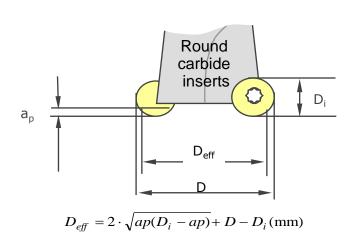
Correction factor for side milling

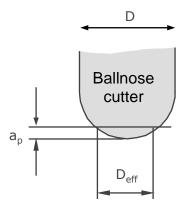
Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f , this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Cavity milling with carbide


Rough milling with round carbide inserts		Diameter of cutter, D (mm)				
	<u>G-0</u>	<20	21-30	31-40	41-50	>50
Axial depth of cut,	Cutting speed v _c (m/min)			120-140		
$ap = 0.2 \times D_i$	Feed f _z (mm/tooth)	-0,18	0,19-0,21	0,22-0,24	0,25-0,27	0,28-
Axial depth of cut,	Cutting speed v _c (m/min)	120-140				
$ap = 0.15 \times D_i$	Feed f _z (mm/tooth)	-0,2	0,21-0,23	0,24-0,26	0,27-0,29	0,3-
Axial depth of cut,	Cutting speed v _c (m/min)			140-160		
$ap = 0.1 \times D_i$	Feed f _z (mm/tooth)	-0,23	0,24-0,26	0,27-0,29	0,3-0,32	0,33-
Axial depth of cut,	Cutting speed v _c (m/min)			160-180		
$ap = 0.05 \times D_i$	Feed f _z (mm/tooth)	-0,31	0,32-0,34	0,35-0,37	0,38-0,4	0,41-


D_i = diameter of the insert

Rough milling with high feed cutters	Diameter				er of cutter, D (mm)		
		<20	21-30	31-40	41-50	>50	
Axial depth of cut,	Cutting speed v _c (m/min)	100-120					
ap = 100% of max ¹⁾	Feed f _z (mm/tooth)	-0,6	0,6-0,8	0,8-1,0	1,0-1,2	1,2-	
Axial depth of cut,	Cutting speed v _c (m/min)			120-140			
ap = 50% of max ¹⁾	Feed f _z (mm/tooth)	-0,8	0,8-1,0	1,0-1,2	1,2-1,4	1,4-	

¹⁾ per centage of maximum depth of cut allowed (according to milling tool supplier)

Semi finishing and finishing milling with ballnose cutters Diameter of cutter, D (mm)						
	\vee	<6	6-8	8-10	10-12	>12
Semi finishing Axial depth of cut,	Cutting speed v _c (m/min)	150-200				
ap = 5% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,08	0,08-0,10	0,10-0,12	0,12-0,14	0,14-
Finishing Axial depth of cut, ap = 2% of D (Ø cutter)	Cutting speed v _c (m/min)			200-220		
	Feed f _z (mm/tooth)	-0,12	0,12-0,14	0,14-0,16	0,16-0,18	0,18-

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$$

Remarks cavity milling:

- 1. Down milling strategy is recommended
- 2. Recommended cutting speeds are at the effective cutter diameter (D_{eff})
- 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD
- 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (Deff)
- 5. A tough PVD coated carbide grade with sharp edge geometry is recommended

Drilling Tyrax® ESR

Drilling							
		Drill diameter (mm)					
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			12-16			
	Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45	
Coated HSS 1-2)	Cutting speed, v _c (m/min)			22-24			
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50	
Indexable insert 3-4)	Cutting speed, v _c (m/min)				140	-180	
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0.10-0,15	
Solid cemented	Cutting speed, v _c (m/min)			120	-150		
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35	
Carbide tipped 5-7)	Cutting speed, v _c (m/min)				60-90		
	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40	

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid carbide or carbide tipped drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, V_c = 5-10 m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. Fluteless tap (non-cutting) can be used.