Cutting data recommendations

Uddeholm RoyAlloy®

Turning

Uddeholm RoyAlloy

Turning					
	Cemente	HSS			
	Roughing	Finishing			
Cutting speed, v _c (m/min)	150-200	200-250	20-25		
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3		
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3		
Suitable grades	P20-P30 coated carbide	P10 coated carbide or			
		cermet			

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling Cemented carbide				
	Roughing	Finishing		
Cutting speed, v _c (m/min)	140-170	170-210		
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2		
Depth of cut, a _p (mm)	2-5	-2		
Suitable grades	P20-P40 coated carbide	P10-P20 coated carbide		
		or cermet		

Remarks:

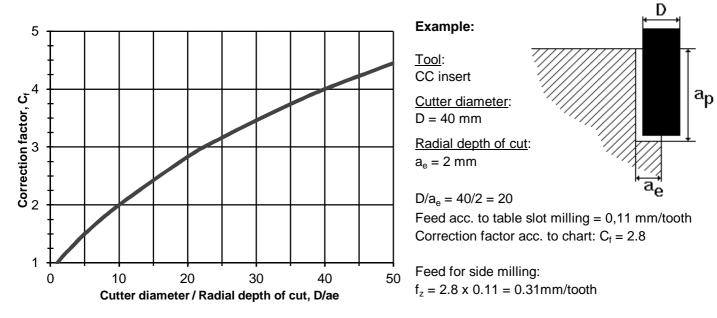
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant. If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide					
	a _e = 0.1 x D	a _e = 0.5 x D	a _e = 1 x D		
Cutting speed, v _c (m/min)	150-180	140-170	130-160		
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15		
Suitable grades	P15-P40 coated carbide				

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm RoyAlloy

Slot milling Axial depth of cut, a _p = 1 x D		Cutter diameter (mm)					
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40	
Uncoated HSS 1-4)	Cutting speed, v _c (m/min)			30-35			
	Feed, f _z (mm/tooth)	0,01-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09	
Coated HSS 1-4)	SS ¹⁻⁴⁾ Cutting speed, v _c (m/min)		50-55				
	Feed, f _z (mm/tooth)	0,02-0,04	0,04-0,05	0,05-0,06	0,06-0,07	0,07-0,10	
Solid cemented	Solid cemented Cutting speed, v _c (m/min)		120-150				
carbide ⁵⁻⁸⁾	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04			
Indexable insert 6-8)	Cutting speed, v _c (m/min)			130-160			
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12	
inserts)	Suitable grades	P15-P40 coated carbide		rbide			
Side milling Axial depth of cut, a _p = 1.5 x D		For side milling the same cutting speed as for slot milling can					
		be used, but the feeds must be adjusted in order to obtain a					
		suitable average chip thickness.					

Correction factor for side milling

Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f, this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools. The axial depth of cut should not exceed the cutter diameter when slot milling.
- 6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a_e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Drilling

Uddeholm RoyAlloy

Drilling						
		Drill diameter (mm)				
		1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS 1-2)	Cutting speed, v _c (m/min)			20-22		
	Feed, f (mm/rev)	0,05-0,10	0,10-0,20	0,20-0,30	0,30-0,35	0,35-0,40
Coated HSS 1-2)	Cutting speed, v _c (m/min)	34-36				
	Feed, f (mm/rev)	0,07-0,18	0,18-0,30	0,30-0,40	0,40-0,45	0,45-0,50
Indexable insert 3-4)	Cutting speed, v _c (m/min)		230-250			-250
(cem. carbide inserts)	Feed, f (mm/rev)				0,05-0,10	0,10-0,15
Solid cemented	Cutting speed, v _c (m/min)		140-170			
carbide 5-7)	Feed, f (mm/rev)		0,08-0,10	0,10-0,20	0,20-0,30	0,30-0,35
Brazed cemented	Cutting speed, v _c (m/min)	90-120			•	
carbide ⁵⁻⁷⁾	Feed, f (mm/rev)			0,15-0,25	0,25-0,35	0,35-0,40

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. When drilling with short "NC drills" the feed may be increased by up to 20%. For extra long drills the feed must be decreased.
- Use insert grades in the range of ISO P20-P30.
 Under unstable conditions a tougher carbide grade should be used for the centre position.
- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid or brazed cemented carbide drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.

Tapping with HSS

Cutting speed, v_c = 10-12 m/min

Remarks:

1. Threading compound or cutting oil gives a longer tool life than emulsion.