Uddeholm Skolvar®

Uddeholm Skolvar®

Uddeholm offer a wide range of high-quality hot forming material for superior performance in a variety of applications. The unique forging grade Uddeholm Skolvar is designed to withstand extreme heat, pressure, and wear, making it ideal for the most demanding hot forming applications. To improve the heat resistance of hot forming dies and reduce the risk for wear, manufacturers may use high-performance materials such as Uddeholm Skolvar. This material has excellent thermal stability and can withstand the high temperatures and load involved in the forming process.

©UDDEHOLMS AB

No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder.

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

GENERAL

Uddeholm Skolvar is an ESR-premium Cr-Mo-V-alloyed tool steel characterized by:

- · very good hot-wear resistance
- very good resistance to abrasive wear
- good ductility
- very good resistance to tempering back
- very good cleanliness
- possible to heat-treat to 50-61 HRC
- · very good hardenability
- · good machinability and grindability

Typical analysis %	C 0.7	Si 0.2	Mn 0.45	Cr 5.0	Mo 2.25	V 1.6
Standard specification	None					
Delivery condition	Soft-annealed. Hardness ≤ 229 HB					
Colour code	Red/Black					

APPLICATIONS

Uddeholm Skolvar is suitable for hot/ press-forging and hot-stamping where hot wear is the pre-domi-nant failure mechanism. Special applications in extrusion and e.g. "shot sleeves" in die-casting are other areas where Uddeholm Skolvar's excellent properties are favourable. The properties of Uddeholm Skolvar makes it also suitable for other appli- cations such as cold work and components.

PROPERTIES

The physical and mechanical properties below are representative of samples which have been taken from the centre of bars with dimension 300 x 150 mm (11.8" x 5.9"). Unless otherwise indicated all specimens have been hardened at 1050°C (1922°F), gas quenched in a vacuum furnace and tempered three times at 560°C (1040°F) for two hours; yielding a working hardness of 56±1 HRC.

PHYSICAL PROPERTIES

Temperature	20°C (68°F)	500°C (932°F)	600°C (1112°F)
Density Kg/m³ Lbs/in³	7760 0.280	7630 0.276	7600 0.274
Modulus of elasticity MPa psi	208 000 30.2 x 10 ⁶	171 000 24.8 x 10 ⁶	154 000 22.3 x 10 ⁶
Coefficient of thermal expansion per °C from 20°C per °F from 68°F	-	12.8 x 10 ⁻⁶ 7.1 x 10 ⁻⁶	13.2 x 10 ⁻⁶ 7.3 x 10 ⁻⁶
Thermal conductivity W/m °C Btu in/ (ft2h°F)	27 187	29 201	29 201
Specific heat J/kg°C Btu/lb°F	478 0.11	641 0.15	737 0.18

MECHANICAL PROPERTIES

Approximate tensile strength at room temperature

Hardness	51 HRC	56 HRC	59 HRC
Yield strength, Rp _{0.2}	1490 MPa	1790 MPa	2030 MPa
Tensile strength, Rm	1750 MPa	2110 MPa	2350 MPa
Elongation, A5	7%	4%	2%
Reduction of area, Z	25%	7%	2%

APPROXIMATE TENSILE STRENGTH AT ELEVATED TEMPERATURES

Hardness 56±1 HRC

Austenitizing temperature 1050°C (1922°F),

tempering temperature 560°C (1040°F) 3x2h

EFFECT OF TIME AT HIGH TEMPERATURES ON HARDNESS

Initial hardness: 56±1 HRC

Austenitizing temperature: 1050°C (1922°F) vs 1130°C (2066°F)

HEAT TREATMENT

GENERAL RECOMMANDATIONS

SOFT ANNEALING

Protect the steel and heat through to 850° C (1560°F). Then cool in furnace at 10° C (20°F) per hour to 600° C (1110°F), then freely in air.

STRESS RELIEVING

After rough machining the tool should be heated through to 650°C (1200°F), holding time 2 hours. Cool slowly to 500°C (930°F), then freely in air.

HARDENING

Preheating temperature: 600–650°C (1110–1200°F) and 850–900°C (1560–1650°F).

Austenitizing temperature: 1050–1150°C (1920 - 2100°F), normally 1050°C (1920°F) or 1130°C (2066°F).

Holding time*: 30 minutes (<1100°C) or 10 minutes (\geq 1100°C).

Protect the tool against decarburization and oxidation during austenitizing.

* Holding time = time at hardening temperature after the tool is fully heated through

CCT GRAPH

CCT GRAPH

Austenitizing temperature 1130°C (2066°F). Holding time 10 minutes

QUENCHING MEDIA

- · High speed gas/circulating atmosphere
- Vacuum furnace (high speed gas with sufficient overpressure)

Note: Temper the tool as soon as its temperature reaches $50-70^{\circ}$ C (120-160°F).

To obtain the optimum properties for the tool, the cooling rate should be as fast as possible with regards to acceptable distortion.

A slow quench rate will result in loss of hardness compared with the given tempering curves.

TEMPERING

Choose the tempering temperature according to the hardness required by reference to the tempering graph below.

Temper at least twice with intermittent cooling to room temperature. High temperature tempering >525°C (980°F) is recommended whenever possible.

DIMENSIONAL CHANGES DURING HARDENING AND TEMPERING

During hardening and tempering the tool is exposed to both thermal and transformation stresses. These stresses will result in distortion. Insufficient levels of machine stock may result in slower than recommended quench rates during heat treatment.

To predict maximum levels of distortion with a proper quench, a stress relief is always recommended between rough and semifinished machining, prior to hardening. For a stress relieved Uddeholm Skolvar tool a minimum machining stock of 0.3% is recommended to account for acceptable levels of distortion during a heat treatment with a rapid quench.

MACHINING RECOMMENDATIONS

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions. More information can be found in the

Uddeholm publication "Cutting data recommendation".

The recommendations in following tables are valid for Uddeholm Skolvar in soft annealed condition.

TURNING

	Turning with carbide		Turning with HSS
Cutting data	Rough	Fine	Fine
parameters	turning	turning	turning
Cutting speed (v _c)			
m/min	130-180	180-230	15-20
f.p.m	430-590	590-760	50-65
Feed (f)			
mm/r	0.2-0.4	0.05-0.2	0.05-0.3
i.p.r.	0.008-0.016	0.002-0.008	0.002-0.012
Depth of cut (ap)			
mm	2-4	0.5-2	0.5-3
inch	0.08-0.16	0.02-0.08	0.02-0.12
Carbide	K20-P20	K15-P15	-
designation	C7-C6	C7	-
ISO	Coated	Coated	
	carbide	carbide	
		or cermet	

DRILLING

HIGH SPEED STEEL TWIST DRILL

Drill c	liameter	Cutting speed (V _C)		Feed (f)	
mm	inch	m/min	f.p.m.	mm/r	i.p.r.
-5	-3/16	12-16*	40-52*	0.05-0.15	0.002-0.006
5-10	3/16-3/8	12-16*	40-52*	0.15-0.20	0.006-0.008
10-15	3/8-5/8	12-16*	40-52*	0.20-0.25	0.008-0.010
15-20	5/8-3/4	12-16*	40-52*	0.25-0.35	0.010-0.014

* For coated HSS drill vc ~22-24 m/min (72-79 f.p.m)

CARBIDE DRILL

	Type of drill		
Cutting data parameters	Indexable insert	Solid carbide	Carbide tip ¹⁾
Cutting speed (v _c) m/min f.p.m	150-200 495-660	80-120 260-395	60-90 195-295
Feed (f) mm/r i.p.r	0.05-0.15 ²⁾ 0.002-0.006 ²⁾	0.08-0.25 ³⁾ 0.003-0.01 ³⁾	0.15-0.25 ⁴⁾ 0.006-0.01 ⁴⁾

1) Drills with replaceable or brazed carbide tip

2) Feed rate for drill diameter 20-40 mm (0.8"-1.6")

3) Feed rate for drill diameter 5-20 mm (0.2"-0.8")

4) Feed rate for drill diameter 10-20 mm (0.4"-0.8")

MILLING

FACE AND SQUARE SHOULDER MILLING

	Milling with carbide		
Cutting data	Rough	Fine	
parameters	milling	milling	
Cutting speed (v _C)			
m/min	120-160	160-200	
f.p.m	390-530	525-655	
Feed (f _z)			
mm/tooth	0.2-0.4	0.1-0.2	
inch/tooth	0.008-0.016	0.004-0.008	
Depth of cut (ap)			
mm	2-4	0.5-2	
inch	0.08-0.16	0.02-0.08	
Carbide			
designation	P20-P40	P10-P20	
ISO	C6-C5	C7-C6	
US	coated carbide	coated carbide	
		of cermet	

END MILLING

	Type of milling		
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel ¹⁾
Cutting speed (v _c)			
m/min	100-130	100-140	15-20 ¹⁾
f.p.m	330-430	330-460	50-65 ¹⁾
Feed (f ₇)			
mm/tooth	0.01-0.20 ²⁾	0.06-0.20 ²⁾	0.01-0.302)
in/tooth	0.0004-0.0082)	0.002-0.0082)	0.0004-0.012 ²⁾
Carbide designation ISO US	-	P30 C6-C5	_

1) For coated HSS end mill vc 20-25 m/min (65-85 f.p.m) 2) Depending on radial depth of cut and cutter diameter

GRINDING

A general grinding wheel recommendation is given below. More information can be found in the Uddeholm publication "Grinding of tool steel"

WHEEL RECOMMENDATION

Type of grinding	Annealed condition milling	Hardened condition milling
Face grinding straight wheel	A 46 HV	A 46 HV
Face grinding segments	A 24 GV	A 36 GV
Cylindrical grinding	A 46 LV	A 60 KV
Internal grinding	A 46 JV	A 60 IV
Profile grinding	A 100 KV	A 120 JV

MACHINING RECOMMENDATIONS HARDENED AND TEMPERED CONDITION

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions.

The recommendations in following tables are valid for Uddeholm Skolvar hardened and tempered to 54-58 HRC.

TURNING

	Turning with carbide		
Cutting data	Rough	Fine	
parameters	turning	turning	
Cutting speed (v _c)			
m/min	40-60	60-80	
f.p.m	130-200	200-265	
Feed (f)			
mm/r	0.1-0.2	0.05-0.1	
i.p.r	0.004-0.008	0.002-0.004	
Depth of cut (ap)			
mm	0.5-2.0	0.2-0.5	
inch	0.02-0.08	0.008-0.02	
Carbide	K10-P10*	K05, P05-P10*	
designation	Coated carbide,	Coated carbide,	
ISO	CBN	cermet or CBN	

1) Cutting fluid is recommended

2) Avoid CBN at interrupt cutting conditions

3) If using ceramic insert increase cutting speed during interrupt cut

DRILLING

CARBIDE DRILL

	Type of drill		
Cutting data	Solid	Carbide	
	Carbide	up [,]	
m/min	30-40	40-50	
f.p.m	100-130	130-165	
Feed (f)			
mm/r	0.05-0.202)	0.10-0.20 ³⁾	
i.p.r	0.002-0.0082)	0.004-0.008 ³⁾	

1) Drills with replaceable or brazed carbide tip

2) Feed rate for drill diameter 5-20 mm (0.2"-0.8")

3) Feed rate for drill diameter 10-20 mm (0.4"-0.8")

MILLING

FACE AND SQUARE SHOULDER MILLING

	Milling with carbide		
Cutting data	Rough	Fine	
parameters	milling	milling	
Cutting speed (v _c)			
m/min	30-50	50-70	
f.p.m	100-165	165-230	
Feed (f ₇)			
mm/tooth	0.05-0.1	0.05-0.1	
in/tooth	0.002-0.004	0.002-0.004	
Depth of cut (ap)			
mm	0.5-1.0	0.1-0.5	
inch	0.02-0.04	0.004-0.02	
Carbide	P10-P20	P10-P20	
designation	K10-K20	C7-C6	
ISO	C7-C6	coated carbide	
US	coated carbide	or cermet	

END MILLING

	Type of milling		
Cutting data parameters	Solid carbide	Carbide indexable insert	
Cutting speed (v _c) m/min f.p.m	60-80 200-265	40-90 130-300	
Feed (f _z) mm/tooth in/tooth	0.01-0.10 ¹⁾ 0.0004-0.004 ¹⁾	0.05-0.15 ¹⁾ 0.002-0.006 ¹⁾	
Carbide designation ISO US	-	P10-20 C6-C5	

1) Depending on radial depth of cut and cutter diameter

GRINDING

A general grinding wheel recommendation is given below. More information can be found in the Uddeholm publication "Grinding of tool steel"

WHEEL RECOMMENDATION

Type of grinding	Hardened condition	
Face grinding straight wheel	A 46 HV	
Face grinding segments	A 36 GV	
Cylindrical grinding	A 60 KV	
Internal grinding	A 60 IV	
Profile grinding	A 120 JV	

SURFACE TREATMENTS

Tool steel may be given a surface treatment to reduce friction and increase wear resistance. The most used treatments are nitriding and surface coating (PVD or CVD). Uddeholm Skolvar is suitable as a substrate steel for various surface coatings.

NITRIDING AND NITROCARBURIZING

Nitriding and nitrocarburizing result in a hard surface layer which is very resistant to wear and galling.

DEPTH OF NITRIDING

The thickness of the layer should be chosen to suit the application in question. Example of the depths and hardness that could be achieved after different kind of nitriding operations are shown in the table below. The maximum surface hardness after nitriding is approximately 1100–1320 $HV_{0.2}$

Process	Time (h)	Depth* (mm/inch)	Hardness (HV _{0.2})
Gas nitriding at 520°C (968°F) at 550°C	10 25	0.10/0.00394	~1170 ~1300
(1022°F) Nitrocarburizing	1	0.12/0.00472	~1200

* Depth of case = distance from surface where hardness is 50 HV0.2 higher than matrix hardness.

PVD

Physical vapour deposition, PVD, is a method for applying wear-resistant surface coating at temperatures between 200–500°C (390–930°F).

CVD

Chemical vapour deposition, CVD, is a method for applying wear-resistant surface coating at a temperature typically around 1000°C (1830°F).

ELECTRICAL DISCHARGE MACHINING – EDM

Following the EDM process, the applicable die surfaces are covered with a resolidified layer (white layer) and a rehardened and untempered layer, both of which are very brittle and hence detrimental to die performance. If EDM is used the white layer must be completely removed mechanically by grinding or stoning. After finish-machining the tool should be given an additional temper at approx. 25°C (50°F) below the highest previous tempering temperature. Further information is given in the Uddeholm brochure "EDM of Tool Steel".

WELDING

Welding of die components can be performed with acceptable results, if the proper precautions are taken during the preparation of the joint, the filler material selection, the pre-heating of the tool, the controlled cooling of the tool and the post weld heat-treatment processes.

The following guidelines summarize the most important welding process parameters.

More detailed information can be found in the brochure "Welding of Tool Steel".

Welding method	TIG	MMA		
Preheating temperature	330°C ± 25°C 625°F ± 50°F	330°C ± 25°C 625°F ± 50°F		
Filler material	UTP A 696 QRO 90 TIG Caldie TIG	UTP 690		
Maximum interpass temperature	500°C 940°F	500°C 940°F		
Post weld cooling	20-40°C/h, 35-40°F/h The first 2 hours, then freely in air <70°C, 160°F			
Hardness after welding	54-62 HRC	54-62 HRC		
Post weld heat treatment				
Hardened condition	Temper 25°C / 50°F for 2h below previous tempering temperature			
Soft annealed condition	Soft-anneal according to the "heat treatment recommendations"			

FURTHER INFORMATION

Please contact your local Uddeholm office for further information on the selection, heat treatment, application, and availability of Uddeholm tool steel.

Manufacturing solutions for generations to come

SHAPING THE WORLD®

We are shaping the world together with the global manufacturing industry. Uddeholm manufactures steel that shapes products used in our every day life. We do it sustainably, fair to people and the environment. Enabling us to continue shaping the world – today and for generations to come.

